In this paper we discuss the weak pullback mean random attractors for stochastic Ginzburg-Landau equations defined in Bochner spaces. We prove the existence and uniqueness of weak pullback mean random attractors for the stochastic Ginzburg-Landau equations with nonlinear diffusion terms. We also establish the existence and uniqueness of such attractors for the deterministic Ginzburg-Landau equations with random initial data. In this case, the periodicity of the weak pullback mean random attractors is also proved whenever the external forcing terms are periodic in time.
Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[2] |
M. Bartuccelli, P. Constantin, C. R. Doering, J. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physica D, 44 (1990), 421-444.
doi: 10.1016/0167-2789(90)90156-J.![]() ![]() ![]() |
[3] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
[4] |
T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201.
doi: 10.1023/A:1022902802385.![]() ![]() ![]() |
[5] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab.Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
[6] |
C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 71 (1994), 285-318.
doi: 10.1016/0167-2789(94)90150-3.![]() ![]() ![]() |
[7] |
J. Duan, P. Holmes and E. S. Titi, Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 5 (1992), 1303-1314.
![]() ![]() |
[8] |
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083.![]() ![]() ![]() |
[9] |
H. Gao, M. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. Math. Anal., 46 (2014), 2281-2309.
doi: 10.1137/130930662.![]() ![]() ![]() |
[10] |
M. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $H \in (1/3, 1/2]$, SIAM J. Appl. Dyn. Syst., 15 (2016), 625-654.
doi: 10.1137/15M1030303.![]() ![]() ![]() |
[11] |
B. Guo and B. Wang, Finite dimensional behavior for the derivative Ginzburg-Landau equation in two spatial dimensions, Phys. D, 89 (1995), 83-99.
doi: 10.1016/0167-2789(95)00216-2.![]() ![]() ![]() |
[12] |
P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016.![]() ![]() ![]() |
[13] |
C. Guo, J. Shu and X. Wang, Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, Acta Math. Sin.(Engl. Ser.), 36 (2020), 318-336.
doi: 10.1007/s10114-020-8407-4.![]() ![]() ![]() |
[14] |
Y. Lan and J. Shu, Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise, Commun. Pure Appl. Anal., 18 (2019), 2409-2431.
doi: 10.3934/cpaa.2019109.![]() ![]() ![]() |
[15] |
Y. Lan and J. Shu, Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise, Dyn. Syst., 34 (2019), 274-300.
doi: 10.1080/14689367.2018.1523368.![]() ![]() ![]() |
[16] |
D. Li, Z. Dai and X. Liu, Long time behaviour for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl., 330 (2007), 934-948.
doi: 10.1016/j.jmaa.2006.07.095.![]() ![]() ![]() |
[17] |
D. Li and B. Guo, Asymptotic behavior of the 2D generalized stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Mech. (English Ed.), 30 (2009), 945-956.
doi: 10.1007/s10483-009-0801-x.![]() ![]() ![]() |
[18] |
D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009.![]() ![]() ![]() |
[19] |
D. Li, K. Lu, B. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.
doi: 10.3934/dcds.2019151.![]() ![]() ![]() |
[20] |
K. Li, The uniqueness of the weak solutions for the complex Ginzburg-Landau Equation, J. Henan Norm. Univ. Nat. Sci., 41 (2013), 34-37.
![]() |
[21] |
J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Gauthier-Villars, Paris, 1969.
![]() ![]() |
[22] |
K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y.![]() ![]() ![]() |
[23] |
D. Ma, J. Shu and L. Qin, Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4335-4359.
doi: 10.3934/dcdsb.2020100.![]() ![]() ![]() |
[24] |
C. Prevot and M. Rockner, A Concise Course on Stochastic Partial Differential Equations, Lecture notes in Mathematics, vol.1905, Springer, Berlin, 2007.
![]() ![]() |
[25] |
X. Pu and B. Guo, Momentum estimates and ergodicity for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise, J. Differential Equations, 251 (2011), 1747-1777.
doi: 10.1016/j.jde.2011.06.011.![]() ![]() ![]() |
[26] |
D. Ruelle, Characteristic exponents for viscous fluid subjected to time dependent forces, Comm. Math. Phys., 93 (1984), 285-300.
doi: 10.1007/BF01258529.![]() ![]() ![]() |
[27] |
B. Schmalfuss, V. Reitmann, T. Riedrich and N. Koksch (eds.), Backward cocycles and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Technische Universitat, Dresden, 1992,185–192.
![]() |
[28] |
T. Shen and J. Huang, Well-posedness and dynamics of stochastic fractional model for nonlinear optical fiber materials, Nonlinear Anal., 110 (2014), 33-46.
doi: 10.1016/j.na.2014.06.018.![]() ![]() ![]() |
[29] |
J. Shu, P. Li, J. Zhang and O. Liao, Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise, J. Math. Phys., 56 (2015), 102702, 11 pp.
doi: 10.1063/1.4934724.![]() ![]() ![]() |
[30] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[31] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31 pp.
doi: 10.1142/S0219493714500099.![]() ![]() ![]() |
[32] |
B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations, Nonlinear Anal., 103 (2014), 9-25.
doi: 10.1016/j.na.2014.02.013.![]() ![]() ![]() |
[33] |
B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |
[34] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
[35] |
B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.
doi: 10.1007/s10884-018-9696-5.![]() ![]() ![]() |
[36] |
B. Wang, Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.
doi: 10.1016/j.jmaa.2019.04.015.![]() ![]() ![]() |
[37] |
B. Wang, Weak pullback attractors for stochastic Navier-Stokes equations with nonlinear diffusion terms, Proc. Amer. Math. Soc., 147 (2019), 1627-1638.
doi: 10.1090/proc/14356.![]() ![]() ![]() |
[38] |
X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006.![]() ![]() ![]() |