Reaction networks can be regarded as finite oriented graphs embedded in Euclidean space. Single-target networks are reaction networks with an arbitrarily set of source vertices, but only one sink vertex. We completely characterize the dynamics of all mass-action systems generated by single-target networks, as follows: either (i) the system is globally stable for all choice of rate constants (in fact, is dynamically equivalent to a detailed-balanced system with a single linkage class), or (ii) the system has no positive steady states for any choice of rate constants and all trajectories must converge to the boundary of the positive orthant or to infinity. Moreover, we show that global stability occurs if and only if the target vertex of the network is in the relative interior of the convex hull of the source vertices.
Citation: |
Figure 2. Consider subnetworks of (a) under mass-action kinetics, whose associated dynamics is given by (9). If the coefficient of $ {\boldsymbol{x}}^{ {\boldsymbol{y}}_1} $ in $ \dot{x} $ is positive and the coefficient of $ {\boldsymbol{x}}^{ {\boldsymbol{y}}_3} $ in $ \dot{x} $ is negative, then the system (9) can be realized by a single-target network, determined by the sign of $ {\boldsymbol{x}}^{ {\boldsymbol{y}}_2} $ in $ \dot{x} $. If the net directions are as shown in (b), then (9) can be realized by the single-target network in (c). Similarly, if the net directions appear as in (d), then (9) can be realized by the network in (e)
Figure 4. Geometric argument for dynamically equivalence to single-target network in Example 3.12. Shown are the edges with $ \mathrm{{X}}_1 + \mathrm{{X}}_2 $ as their source. The centre $ \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)^\top $ of the tetrahedron is marked in blue. With rate constants given in the example, the weighted sum of reaction vectors points from the source to the centre
Figure 6. The system in Figure 5(a) is dynamically equivalent to a complex-balanced system if and only if $ \frac{1}{25} \leq \frac{ \kappa_1 \kappa_3}{ \kappa_2 \kappa_4} \leq 25 $. The system is equivalent to (a) when $ \kappa_2 \kappa_4 = 25 \kappa_1 \kappa_3 $ and (b) when $ 25 \kappa_2 \kappa_4 = \kappa_1 \kappa_3 $. For $ \frac{1}{25} \leq \frac{ \kappa_1 \kappa_3}{ \kappa_2 \kappa_4} \leq 25 $, the dynamically equivalent system is an appropriate convex combination of (a) and (b)
[1] |
D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM Journal on Applied Mathematics, 71 (2011), 1487-1508.
doi: 10.1137/11082631X.![]() ![]() ![]() |
[2] |
D. F. Anderson, J. D. Brunner, G. Craciun and M. D. Johnston, On classes of reaction networks and their associated polynomial dynamical systems, (2020).
![]() |
[3] |
D. Angeli, A tutorial on chemical reaction network dynamics, European Journal of Control, 15 (2009), 398-406.
doi: 10.3166/ejc.15.398-406.![]() ![]() ![]() |
[4] |
M. W. Birch, Maximum likelihood in three-way contingency tables, Journal of the Royal Statistical Society. Series B (Methodological), 25 (1963), 220-233.
doi: 10.1111/j.2517-6161.1963.tb00504.x.![]() ![]() ![]() |
[5] |
B. Boros, Existence of positive steady states for weakly reversible mass-action systems, SIAM Journal on Mathematical Analysis, 51 (2019), 435-449.
doi: 10.1137/17M115534X.![]() ![]() ![]() |
[6] |
B. Boros and J. Hofbauer, Permanence of weakly reversible mass-action systems with a single linkage class, SIAM Journal on Applied Dynamical Systems, 19 (2020), 352-365.
doi: 10.1137/19M1248431.![]() ![]() ![]() |
[7] |
M. L. Brustenga, G. Craciun and M-S Sorea, Disguised toric dynamical systems, (2020).
![]() |
[8] |
G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, (2015), arXiv: 1501.02860 [math.DS].
![]() |
[9] |
G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM Journal on Applied Algebra and Geometry, 3 (2019), 87-106.
doi: 10.1137/17M1129076.![]() ![]() ![]() |
[10] |
G. Craciun, A. Dickenstein, B. Sturmfels and A. Shiu, Toric dynamical systems, Journal of Symbolic Computation, 44 (2009), 1551-1565.
doi: 10.1016/j.jsc.2008.08.006.![]() ![]() ![]() |
[11] |
G. Craciun, J. Jin and P. Y. Yu, An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems, SIAM Journal on Applied Mathematics, 80 (2020), 183-205.
doi: 10.1137/19M1244494.![]() ![]() ![]() |
[12] |
G. Craciun, J. Jin and P. Y. Yu, Dynamical equivalence to complex balancing as an open condition in parameter space, in Preparation.
![]() |
[13] |
G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM Journal on Applied Mathematics, 73 (2013), 305-329.
doi: 10.1137/100812355.![]() ![]() ![]() |
[14] |
G. Craciun and C. Pantea, Identifiability of chemical reaction networks, Journal of Mathematical Chemistry, 44 (2008), 244-259.
doi: 10.1007/s10910-007-9307-x.![]() ![]() ![]() |
[15] |
A. Dickenstein and M. Pérez Millán, How far is complex balancing from detailed balancing?, Bulletin of Mathematical Biology, 73 (2011), 811-828.
doi: 10.1007/s11538-010-9611-7.![]() ![]() ![]() |
[16] |
M. Feinberg, Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49 (1972), 187-194.
doi: 10.1007/BF00255665.![]() ![]() ![]() |
[17] |
M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors - I. The Deficiency Zero and the Deficiency One Theorems, Chemical Engineering Science, 42 (1987), 2229-2268.
![]() |
[18] |
M. Feinberg, Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity, Chemical Engineering Science, 44 (1989), 1819-1827.
![]() |
[19] |
M. Feinberg, Foundations of Chemical Reaction Network Theory, Applied Mathematical Sciences, Springer International Publishing, 2019.
![]() ![]() |
[20] |
M. Gopalkrishnan, E. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM Journal on Applied Dynamical Systems, 13 (2014), 758-797.
doi: 10.1137/130928170.![]() ![]() ![]() |
[21] |
J. Gunawardena, Chemical reaction network theory for in-silico biologists, (2003), http://vcp.med.harvard.edu/papers/crnt.pdf,
![]() |
[22] |
F. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics, Archive for Rational Mechanics and Analysis, 49 (1972), 172-186.
doi: 10.1007/BF00255664.![]() ![]() ![]() |
[23] |
F. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47 (1972), 81-116.
doi: 10.1007/BF00251225.![]() ![]() ![]() |
[24] |
M. D. Johnston, Translated chemical reaction networks, Bulletin of Mathematical Biology, 76 (2014), 1081-1116.
doi: 10.1007/s11538-014-9947-5.![]() ![]() ![]() |
[25] |
M. D. Johnston and E. Burton, Computing weakly reversible deficiency zero network translations using elementary flux modes, Bulletin of Mathematical Biology, 81 (2019), 1613-1644.
doi: 10.1007/s11538-019-00579-z.![]() ![]() ![]() |
[26] |
M. D. Johnston, D. Siegel and G. Szederkényi, Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiencys, Mathematical Biosciences, 241 (2013), 88-98.
doi: 10.1016/j.mbs.2012.09.008.![]() ![]() ![]() |
[27] |
G. Lipták, G. Szederkényi and K. M. Hangos, Computing zero deficiency realizations of kinetic systems, Systems & Control Letters, 81 (2015), 24-30.
doi: 10.1016/j.sysconle.2015.05.001.![]() ![]() ![]() |
[28] |
S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM Journal on Applied Mathematics, 72 (2012), 1926-1947.
doi: 10.1137/110847056.![]() ![]() ![]() |
[29] |
L. Onsager, Reciprocal relations in irreversible processes I., Physical Review, 37 (1931), 405-426.
![]() |
[30] |
L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511610684.007.![]() ![]() ![]() |
[31] |
C. Pantea, On the persistence and global stability of mass-action systems, SIAM Journal on Mathematical Analysis, 44 (2012), 1636-1673.
doi: 10.1137/110840509.![]() ![]() ![]() |
[32] |
J. Rudan, G. Szederkényi, K. M. Hangos and T. Péni, Polynomial time algorithms to determine weakly reversible realizations of chemical reaction networks, Journal of Mathematical Chemistry, 52 (2014), 1386-1404.
doi: 10.1007/s10910-014-0318-0.![]() ![]() ![]() |
[33] |
S. Schuster and R. Schuster, A generalization of Wegscheider's condition. Implications for properties of steady states and for quasi-steady-state approximation, Journal of Mathematical Chemistry, 3 (1989), 25-42.
doi: 10.1007/BF01171883.![]() ![]() ![]() |
[34] |
G. Szederkényi, Comment on "Identifiability of chemical reaction networks" by G. Craciun and C. Pantea, Journal of Mathematical Chemistry, 45 (2009), 1172-1174.
doi: 10.1007/s10910-008-9499-8.![]() ![]() ![]() |
[35] |
G. Szederkényi, J. R. Banga and A. A. Alonso, CRNreals: A toolbox for distinguishability and identifiability analysis of biochemical reaction networks, Bioinformatics, 28 (2012), 1549-1550.
![]() |
[36] |
G. Szederkényi and K. M. Hangos, Finding complex balanced and detailed balanced realizations of chemical reaction networks, Journal of Mathematical Chemistry, 49 (2011), 1163-1179.
doi: 10.1007/s10910-011-9804-9.![]() ![]() ![]() |
[37] |
A. I. Vol'pert, Differential equations on graphs, Math. USSR-Sb, 88 (1972), 578-588.
![]() ![]() |
[38] |
R. Wegscheider, Über simultane gleichgewichte und die beziehungen zwischen thermodynamik und reactionskinetik homogener systeme, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 22 (1901), 849-906.
![]() |
[39] |
P. Y. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry, 58 (2018), 733-741.
![]() |
(a) A single-target network that is globally stable under mass-action kinetics. (b)–(c) Single-target networks with no positive steady states. (d) Not a single-target network
Consider subnetworks of (a) under mass-action kinetics, whose associated dynamics is given by (9). If the coefficient of
Reversible systems in (a) Example 3.12 and (b) Example 3.13 that are dynamically equivalent to detailed-balanced systems. Each undirected edge represents a pair of reversible edges
Geometric argument for dynamically equivalence to single-target network in Example 3.12. Shown are the edges with
(a) The mass-action system with two target vertices from Example 4.2, which is dynamically equivalent to a complex-balanced system using a subnetwork of (b) if and only if
The system in Figure 5(a) is dynamically equivalent to a complex-balanced system if and only if