\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment

  • * Corresponding author: Zhengce Zhang

    * Corresponding author: Zhengce Zhang
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate a reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. The primary aim is to study the impact of small advection terms and heterogeneous environment, which is on two species' dynamics via a free boundary. The function $ m(x) $ represents heterogeneous environment, and it can satisfy positive everywhere condition or changeable sign condition. Firstly, on one hand, we provide long time behaviors of the solution in vanishing case when $ m(x) $ satisfies both conditions above; on the other hand, long time behaviors of the solution in spreading case are got when $ m(x) $ satisfies positive everywhere condition. Secondly, a spreading-vanishing dichotomy and several sufficient conditions through the initial data and the moving parameters are obtained to determine whether spreading or vanishing of two species happens when $ m(x) $ satisfies both conditions above. Furthermore, we derive estimates of spreading speed of the free boundary when $ m(x) $ satisfies positive everywhere condition and two species spreading occurs.

    Mathematics Subject Classification: Primary: 35B40, 35K51; Secondary: 35R35, 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph.D thesis, The Ohio State University, 2011.
    [2] G. BuntingY. Du and K. Krakowski, Spreading speed revisited: analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.
    [3] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.
    [4] X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.
    [5] Q. ChenF. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.  doi: 10.1093/imamat/hxw059.
    [6] Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.
    [7] Y. Du and Z. Guo, The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012), 996-1035.  doi: 10.1016/j.jde.2012.04.014.
    [8] Y. DuZ. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.
    [9] Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.
    [10] Y. Du and Z. Lin, The diffusive competition model with a free boundary: invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.
    [11] Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.
    [12] Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.
    [13] Y. DuM. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017), 253-287.  doi: 10.1016/j.matpur.2016.06.005.
    [14] B. Duan and Z. Zhang, A two-species weak competition system of reaction-diffusion-advection with double free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 801-829.  doi: 10.3934/dcdsb.2018208.
    [15] B. Duan and Z. Zhang, A reaction-diffusion-advection free boundary problem for a two-species competition system, J. Math. Anal. Appl., 476 (2019), 595-618.  doi: 10.1016/j.jmaa.2019.03.073.
    [16] H. GuZ. Lin and B. Lou, Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53.  doi: 10.1016/j.aml.2014.05.015.
    [17] H. GuZ. Lin and B. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117.  doi: 10.1090/S0002-9939-2014-12214-3.
    [18] H. Gu and B. Lou, Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, J. Differential Equations, 260 (2016), 3991-4015.  doi: 10.1016/j.jde.2015.11.002.
    [19] H. GuB. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.
    [20] J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.
    [21] J.-S. Guo and C.-H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.  doi: 10.1088/0951-7715/28/1/1.
    [22] D. HilhorstM. IidaM. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.  doi: 10.1007/BF03168569.
    [23] D. HilhorstM. Mimura and R. Sch$\ddot{a}$tzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.  doi: 10.1016/S1468-1218(02)00009-3.
    [24] Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.
    [25] Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492. 
    [26] K. I. KimZ. Lin and Z. Ling, Global existence and blowup of solutions to a free boundary problem for mutualistic model, Sci. China Math., 53 (2010), 2085-2095.  doi: 10.1007/s11425-010-4007-6.
    [27] A. N. KolmogorovI. G. Petrovsky and N. S. Piskunov, $\acute{E}$tude de l'$\acute{e}$quation de la diffusion avec croissance de la quantit$\acute{e}$ de mati$\grave{e}$re et son application $\grave{a}$ un probl$\acute{e}$me biologique, Bull. Univ. Moskov. Ser. Int. Sect. A, 1 (1937), 1-25. 
    [28] K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.  doi: 10.1137/120869481.
    [29] M. Li and L. Lin, Existence of global solutions to a mutualistic model with double fronts, Electron. J. Differential Equations, (2015), 1–14.
    [30] M. Li and Z. Lin, The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2089-2105.  doi: 10.3934/dcdsb.2015.20.2089.
    [31] Z. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.
    [32] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.
    [33] N. A. Maidana and H. M. Yang, Spatial spreading of West Nile Virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417.  doi: 10.1016/j.jtbi.2008.12.032.
    [34] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9781611971972.
    [35] R. Peng and X. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.
    [36] M. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.
    [37] M. Wang, Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 415-421.  doi: 10.3934/dcdsb.2018179.
    [38] J. Wang and L. Zhang, Invasion by an inferior or superior competitor: a diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398.  doi: 10.1016/j.jmaa.2014.09.055.
    [39] M. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.
    [40] M. Wang and J. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.  doi: 10.1007/s10884-014-9363-4.
    [41] M. Wang and J. Zhao, A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.
    [42] C.-H. Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2441-2455.  doi: 10.3934/dcdsb.2013.18.2441.
    [43] C.-H. Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015), 873-897.  doi: 10.1016/j.jde.2015.02.021.
    [44] Q. Zhang and M. Wang, Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.  doi: 10.1016/j.jmaa.2019.02.037.
    [45] J. Zhao and M. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263.  doi: 10.1016/j.nonrwa.2013.10.003.
    [46] Y. Zhao and M. Wang, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.  doi: 10.1093/imamat/hxv035.
    [47] Y. Zhao and M. Wang, A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.  doi: 10.1007/s10884-017-9571-9.
    [48] P. Zhou and D. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954.  doi: 10.1016/j.jde.2013.12.008.
    [49] L. ZhouS. Zhang and Z. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.
  • 加载中
SHARE

Article Metrics

HTML views(621) PDF downloads(436) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return