-
Previous Article
Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations
- DCDS-B Home
- This Issue
-
Next Article
Input-to-state stability of infinite-dimensional stochastic nonlinear systems
A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China |
In this paper, we investigate a reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. The primary aim is to study the impact of small advection terms and heterogeneous environment, which is on two species' dynamics via a free boundary. The function $ m(x) $ represents heterogeneous environment, and it can satisfy positive everywhere condition or changeable sign condition. Firstly, on one hand, we provide long time behaviors of the solution in vanishing case when $ m(x) $ satisfies both conditions above; on the other hand, long time behaviors of the solution in spreading case are got when $ m(x) $ satisfies positive everywhere condition. Secondly, a spreading-vanishing dichotomy and several sufficient conditions through the initial data and the moving parameters are obtained to determine whether spreading or vanishing of two species happens when $ m(x) $ satisfies both conditions above. Furthermore, we derive estimates of spreading speed of the free boundary when $ m(x) $ satisfies positive everywhere condition and two species spreading occurs.
References:
[1] |
I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph.D thesis, The Ohio State University, 2011. |
[2] |
G. Bunting, Y. Du and K. Krakowski,
Spreading speed revisited: analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583. |
[3] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[4] |
X. Chen, K.-Y. Lam and Y. Lou,
Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.
doi: 10.3934/dcds.2012.32.3841. |
[5] |
Q. Chen, F. Li and F. Wang,
A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.
doi: 10.1093/imamat/hxw059. |
[6] |
Y. Du and Z. Guo,
Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.
doi: 10.1016/j.jde.2011.02.011. |
[7] |
Y. Du and Z. Guo,
The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012), 996-1035.
doi: 10.1016/j.jde.2012.04.014. |
[8] |
Y. Du, Z. Guo and R. Peng,
A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.
doi: 10.1016/j.jfa.2013.07.016. |
[9] |
Y. Du and Z. Lin,
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089. |
[10] |
Y. Du and Z. Lin,
The diffusive competition model with a free boundary: invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105. |
[11] |
Y. Du and B. Lou,
Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568. |
[12] |
Y. Du and L. Ma,
Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.
doi: 10.1017/S0024610701002289. |
[13] |
Y. Du, M. Wang and M. Zhou,
Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017), 253-287.
doi: 10.1016/j.matpur.2016.06.005. |
[14] |
B. Duan and Z. Zhang,
A two-species weak competition system of reaction-diffusion-advection with double free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 801-829.
doi: 10.3934/dcdsb.2018208. |
[15] |
B. Duan and Z. Zhang,
A reaction-diffusion-advection free boundary problem for a two-species competition system, J. Math. Anal. Appl., 476 (2019), 595-618.
doi: 10.1016/j.jmaa.2019.03.073. |
[16] |
H. Gu, Z. Lin and B. Lou,
Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53.
doi: 10.1016/j.aml.2014.05.015. |
[17] |
H. Gu, Z. Lin and B. Lou,
Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117.
doi: 10.1090/S0002-9939-2014-12214-3. |
[18] |
H. Gu and B. Lou,
Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, J. Differential Equations, 260 (2016), 3991-4015.
doi: 10.1016/j.jde.2015.11.002. |
[19] |
H. Gu, B. Lou and M. Zhou,
Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.
doi: 10.1016/j.jfa.2015.07.002. |
[20] |
J.-S. Guo and C.-H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[21] |
J.-S. Guo and C.-H. Wu,
Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.
doi: 10.1088/0951-7715/28/1/1. |
[22] |
D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya,
A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.
doi: 10.1007/BF03168569. |
[23] |
D. Hilhorst, M. Mimura and R. Sch$\ddot{a}$tzle,
Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.
doi: 10.1016/S1468-1218(02)00009-3. |
[24] |
Y. Kaneko and H. Matsuzawa,
Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.
doi: 10.1016/j.jmaa.2015.02.051. |
[25] |
Y. Kaneko and Y. Yamada,
A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.
|
[26] |
K. I. Kim, Z. Lin and Z. Ling,
Global existence and blowup of solutions to a free boundary problem for mutualistic model, Sci. China Math., 53 (2010), 2085-2095.
doi: 10.1007/s11425-010-4007-6. |
[27] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov,
$\acute{E}$tude de l'$\acute{e}$quation de la diffusion avec croissance de la quantit$\acute{e}$ de mati$\grave{e}$re et son application $\grave{a}$ un probl$\acute{e}$me biologique, Bull. Univ. Moskov. Ser. Int. Sect. A, 1 (1937), 1-25.
|
[28] |
K.-Y. Lam and W.-M. Ni,
Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.
doi: 10.1137/120869481. |
[29] |
M. Li and L. Lin, Existence of global solutions to a mutualistic model with double fronts, Electron. J. Differential Equations, (2015), 1–14. |
[30] |
M. Li and Z. Lin,
The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2089-2105.
doi: 10.3934/dcdsb.2015.20.2089. |
[31] |
Z. Lin,
A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
doi: 10.1088/0951-7715/20/8/004. |
[32] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[33] |
N. A. Maidana and H. M. Yang,
Spatial spreading of West Nile Virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417.
doi: 10.1016/j.jtbi.2008.12.032. |
[34] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011.
doi: 10.1137/1.9781611971972. |
[35] |
R. Peng and X. Zhao,
The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.
doi: 10.3934/dcds.2013.33.2007. |
[36] |
M. Wang,
On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013. |
[37] |
M. Wang,
Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 415-421.
doi: 10.3934/dcdsb.2018179. |
[38] |
J. Wang and L. Zhang,
Invasion by an inferior or superior competitor: a diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398.
doi: 10.1016/j.jmaa.2014.09.055. |
[39] |
M. Wang and Y. Zhang,
Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.
doi: 10.1016/j.nonrwa.2015.01.004. |
[40] |
M. Wang and J. Zhao,
Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4. |
[41] |
M. Wang and J. Zhao,
A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.
doi: 10.1007/s10884-015-9503-5. |
[42] |
C.-H. Wu,
Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2441-2455.
doi: 10.3934/dcdsb.2013.18.2441. |
[43] |
C.-H. Wu,
The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015), 873-897.
doi: 10.1016/j.jde.2015.02.021. |
[44] |
Q. Zhang and M. Wang,
Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.
doi: 10.1016/j.jmaa.2019.02.037. |
[45] |
J. Zhao and M. Wang,
A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263.
doi: 10.1016/j.nonrwa.2013.10.003. |
[46] |
Y. Zhao and M. Wang,
Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.
doi: 10.1093/imamat/hxv035. |
[47] |
Y. Zhao and M. Wang,
A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.
doi: 10.1007/s10884-017-9571-9. |
[48] |
P. Zhou and D. Xiao,
The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954.
doi: 10.1016/j.jde.2013.12.008. |
[49] |
L. Zhou, S. Zhang and Z. Liu,
A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.
doi: 10.1016/j.amc.2016.05.008. |
show all references
References:
[1] |
I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph.D thesis, The Ohio State University, 2011. |
[2] |
G. Bunting, Y. Du and K. Krakowski,
Spreading speed revisited: analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583. |
[3] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[4] |
X. Chen, K.-Y. Lam and Y. Lou,
Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.
doi: 10.3934/dcds.2012.32.3841. |
[5] |
Q. Chen, F. Li and F. Wang,
A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.
doi: 10.1093/imamat/hxw059. |
[6] |
Y. Du and Z. Guo,
Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.
doi: 10.1016/j.jde.2011.02.011. |
[7] |
Y. Du and Z. Guo,
The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012), 996-1035.
doi: 10.1016/j.jde.2012.04.014. |
[8] |
Y. Du, Z. Guo and R. Peng,
A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.
doi: 10.1016/j.jfa.2013.07.016. |
[9] |
Y. Du and Z. Lin,
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089. |
[10] |
Y. Du and Z. Lin,
The diffusive competition model with a free boundary: invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105. |
[11] |
Y. Du and B. Lou,
Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568. |
[12] |
Y. Du and L. Ma,
Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.
doi: 10.1017/S0024610701002289. |
[13] |
Y. Du, M. Wang and M. Zhou,
Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017), 253-287.
doi: 10.1016/j.matpur.2016.06.005. |
[14] |
B. Duan and Z. Zhang,
A two-species weak competition system of reaction-diffusion-advection with double free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 801-829.
doi: 10.3934/dcdsb.2018208. |
[15] |
B. Duan and Z. Zhang,
A reaction-diffusion-advection free boundary problem for a two-species competition system, J. Math. Anal. Appl., 476 (2019), 595-618.
doi: 10.1016/j.jmaa.2019.03.073. |
[16] |
H. Gu, Z. Lin and B. Lou,
Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53.
doi: 10.1016/j.aml.2014.05.015. |
[17] |
H. Gu, Z. Lin and B. Lou,
Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117.
doi: 10.1090/S0002-9939-2014-12214-3. |
[18] |
H. Gu and B. Lou,
Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, J. Differential Equations, 260 (2016), 3991-4015.
doi: 10.1016/j.jde.2015.11.002. |
[19] |
H. Gu, B. Lou and M. Zhou,
Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.
doi: 10.1016/j.jfa.2015.07.002. |
[20] |
J.-S. Guo and C.-H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[21] |
J.-S. Guo and C.-H. Wu,
Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.
doi: 10.1088/0951-7715/28/1/1. |
[22] |
D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya,
A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.
doi: 10.1007/BF03168569. |
[23] |
D. Hilhorst, M. Mimura and R. Sch$\ddot{a}$tzle,
Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.
doi: 10.1016/S1468-1218(02)00009-3. |
[24] |
Y. Kaneko and H. Matsuzawa,
Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.
doi: 10.1016/j.jmaa.2015.02.051. |
[25] |
Y. Kaneko and Y. Yamada,
A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.
|
[26] |
K. I. Kim, Z. Lin and Z. Ling,
Global existence and blowup of solutions to a free boundary problem for mutualistic model, Sci. China Math., 53 (2010), 2085-2095.
doi: 10.1007/s11425-010-4007-6. |
[27] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov,
$\acute{E}$tude de l'$\acute{e}$quation de la diffusion avec croissance de la quantit$\acute{e}$ de mati$\grave{e}$re et son application $\grave{a}$ un probl$\acute{e}$me biologique, Bull. Univ. Moskov. Ser. Int. Sect. A, 1 (1937), 1-25.
|
[28] |
K.-Y. Lam and W.-M. Ni,
Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.
doi: 10.1137/120869481. |
[29] |
M. Li and L. Lin, Existence of global solutions to a mutualistic model with double fronts, Electron. J. Differential Equations, (2015), 1–14. |
[30] |
M. Li and Z. Lin,
The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2089-2105.
doi: 10.3934/dcdsb.2015.20.2089. |
[31] |
Z. Lin,
A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
doi: 10.1088/0951-7715/20/8/004. |
[32] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[33] |
N. A. Maidana and H. M. Yang,
Spatial spreading of West Nile Virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417.
doi: 10.1016/j.jtbi.2008.12.032. |
[34] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011.
doi: 10.1137/1.9781611971972. |
[35] |
R. Peng and X. Zhao,
The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.
doi: 10.3934/dcds.2013.33.2007. |
[36] |
M. Wang,
On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013. |
[37] |
M. Wang,
Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 415-421.
doi: 10.3934/dcdsb.2018179. |
[38] |
J. Wang and L. Zhang,
Invasion by an inferior or superior competitor: a diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398.
doi: 10.1016/j.jmaa.2014.09.055. |
[39] |
M. Wang and Y. Zhang,
Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.
doi: 10.1016/j.nonrwa.2015.01.004. |
[40] |
M. Wang and J. Zhao,
Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4. |
[41] |
M. Wang and J. Zhao,
A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.
doi: 10.1007/s10884-015-9503-5. |
[42] |
C.-H. Wu,
Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2441-2455.
doi: 10.3934/dcdsb.2013.18.2441. |
[43] |
C.-H. Wu,
The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015), 873-897.
doi: 10.1016/j.jde.2015.02.021. |
[44] |
Q. Zhang and M. Wang,
Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.
doi: 10.1016/j.jmaa.2019.02.037. |
[45] |
J. Zhao and M. Wang,
A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263.
doi: 10.1016/j.nonrwa.2013.10.003. |
[46] |
Y. Zhao and M. Wang,
Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.
doi: 10.1093/imamat/hxv035. |
[47] |
Y. Zhao and M. Wang,
A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.
doi: 10.1007/s10884-017-9571-9. |
[48] |
P. Zhou and D. Xiao,
The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954.
doi: 10.1016/j.jde.2013.12.008. |
[49] |
L. Zhou, S. Zhang and Z. Liu,
A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.
doi: 10.1016/j.amc.2016.05.008. |
[1] |
Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240 |
[2] |
Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213 |
[3] |
Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121 |
[4] |
Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 |
[5] |
Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208 |
[6] |
Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176 |
[7] |
Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 |
[8] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
[9] |
Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317 |
[10] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[11] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[12] |
Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785 |
[13] |
Grégory Faye, Thomas Giletti, Matt Holzer. Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021146 |
[14] |
Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116 |
[15] |
Kwangjoong Kim, Wonhyung Choi, Inkyung Ahn. Reaction-advection-diffusion competition models under lethal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021250 |
[16] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[17] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[18] |
Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199 |
[19] |
Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210 |
[20] |
Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure and Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]