• Previous Article
    Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains
doi: 10.3934/dcdsb.2021075
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori

1. 

School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, Jilin 130024

2. 

China, School of College of Mathematics, Jilin University, Changchun, Jilin 130012, China

* Corresponding author: Yixian Gao

Received  August 2020 Revised  January 2021 Early access March 2021

Fund Project: The first author is supported by NSFC grant 11901232 and China Postdoctoral Science Foundation Funded Projects 2019M651191, 2020T130243. The second author is supported by NSFC grants 11871140, 12071065, JJKH 20180006KJ and FRFCU 2412019BJ005

This paper concerns the mathematical analysis of quasi-periodic travelling wave solutions for beam equations with damping on 3-dimensional rectangular tori. Provided that the generators of the rectangular torus satisfy certain relationships, by excluding some values of two model parameters, we establish the existence of small amplitude quasi-periodic travelling wave solutions with three frequencies. Moreover, it can be shown that such solutions are either continuations of rotating wave solutions, or continuations of quasi-periodic travelling wave solutions with two frequencies, and that the set of two model parameters is dense in the positive quadrant.

Citation: Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021075
References:
[1]

M. Berti, L. Franzoi and A. Maspero, Traveling quasi-periodic water waves with constant vorticity, preprint, arXiv: 2004.08905. Google Scholar

[2]

J. Bourgain, On Strichartz's inequalities and the nonlinear Schrödinger equation on irrational tori, in Mathematical Aspects of Nonlinear Dispersive Equations, volume 163 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, (2007), 1–20.  Google Scholar

[3]

S. A. CampbellJ. BélairT. Ohira and J. Milton, Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback, Chaos, 5 (1995), 640-645.  doi: 10.1063/1.166134.  Google Scholar

[4]

S. A. CampbellJ. BélairT. Ohira and J. Milton, Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, J. Dynam. Differential Equations, 7 (1995), 213-236.  doi: 10.1007/BF02218819.  Google Scholar

[5]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math., 39 (1981/82), 433-454.  doi: 10.1090/qam/644099.  Google Scholar

[6]

Y. Deng, On growth of Sobolev norms for energy critical NLS on irrational tori: Small energy case, Comm. Pure Appl. Math., 72 (2019), 801-834.  doi: 10.1002/cpa.21797.  Google Scholar

[7]

Y. Deng and P. Germain, Growth of solutions to NLS on irrational tori, Int. Math. Res. Not. IMRN, 2019 (2019), 2919-2950.  doi: 10.1093/imrn/rnx210.  Google Scholar

[8]

Y. DengP. Germain and L. Guth, Strichartz estimates for the Schrödinger equation on irrational tori, J. Funct. Anal., 273 (2017), 2846-2869.  doi: 10.1016/j.jfa.2017.05.011.  Google Scholar

[9]

R. Denk and R. Schnaubelt, A structurally damped plate equation with Dirichlet–Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353.  doi: 10.1016/j.jde.2015.02.043.  Google Scholar

[10]

E. Emmrich and M. Thalhammer, A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization, Nonlinearity, 24 (2011), 2523-2546.  doi: 10.1088/0951-7715/24/9/008.  Google Scholar

[11]

R. Feola and F. Giuliani, Quasi-periodic traveling waves on an infinitely deep fluid under gravity, preprint, arXiv: 2005.08280. Google Scholar

[12]

L. Herrmann, Vibration of the Euler–Bernoulli beam with allowance for dampings, in Proc. World Congr. Eng., London, UK, (2008), 901–904. Google Scholar

[13]

R. Imekraz, Long time existence for the semi-linear beam equation on irrational tori of dimension two, Nonlinearity, 29 (2016), 3067-3102.  doi: 10.1088/0951-7715/29/10/3067.  Google Scholar

[14]

A. Jenkins, Self-oscillation, Phys. Rep., 525 (2013), 167-222.  doi: 10.1016/j.physrep.2012.10.007.  Google Scholar

[15]

F. Kogelbauer and G. Haller, Rigorous model reduction for a damped-forced nonlinear beam model: An infinite-dimensional analysis, J. Nonlinear Sci., 28 (2018), 1109-1150.  doi: 10.1007/s00332-018-9443-4.  Google Scholar

[16]

N. Kosovalić, Quasi-periodic self-excited travelling waves for damped beam equations, J. Differential Equations, 265 (2018), 2171-2190.  doi: 10.1016/j.jde.2018.04.022.  Google Scholar

[17]

N. Kosovalić and B. Pigott, Self-excited vibrations for damped and delayed 1-dimensional wave equations, J. Dynam. Differential Equations, 31 (2019), 129-152.  doi: 10.1007/s10884-018-9654-2.  Google Scholar

[18]

K. Liu and Z. Liu, Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., 36 (1998), 1086-1098.  doi: 10.1137/S0363012996310703.  Google Scholar

[19]

A. Longtin and J. G. Milton, Modelling autonomous oscillations in the human pupil light reflex using non-linear delay-differential equations, Bull. Math. Biol., 51 (1989), 605-624.   Google Scholar

[20]

D. Takács and G. Stépán, Experiments on quasiperiodic wheel shimmy, J. Comput. Nonlinear Dynam., 4 (2009), 031007. Google Scholar

[21]

H. K. Wang and G. Chen, Asymptotic locations of eigenfrequencies of Euler–Bernoulli beam with nonhomogeneous structural and viscous damping coefficients, SIAM J. Control Optim., 29 (1991), 347-367.  doi: 10.1137/0329019.  Google Scholar

[22]

W. Weaver, Jr., S. P. Timoshenko and D. H. Young, Vibration Problems in Engineering, 5$^{nd}$ edition, John Wiley & Sons Limited, 1990. Google Scholar

[23]

J. Wilkening and X. Zhao, Quasi-periodic traveling gravity-capillary waves, preprint, arXiv: 2002.09487. Google Scholar

show all references

References:
[1]

M. Berti, L. Franzoi and A. Maspero, Traveling quasi-periodic water waves with constant vorticity, preprint, arXiv: 2004.08905. Google Scholar

[2]

J. Bourgain, On Strichartz's inequalities and the nonlinear Schrödinger equation on irrational tori, in Mathematical Aspects of Nonlinear Dispersive Equations, volume 163 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, (2007), 1–20.  Google Scholar

[3]

S. A. CampbellJ. BélairT. Ohira and J. Milton, Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback, Chaos, 5 (1995), 640-645.  doi: 10.1063/1.166134.  Google Scholar

[4]

S. A. CampbellJ. BélairT. Ohira and J. Milton, Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, J. Dynam. Differential Equations, 7 (1995), 213-236.  doi: 10.1007/BF02218819.  Google Scholar

[5]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math., 39 (1981/82), 433-454.  doi: 10.1090/qam/644099.  Google Scholar

[6]

Y. Deng, On growth of Sobolev norms for energy critical NLS on irrational tori: Small energy case, Comm. Pure Appl. Math., 72 (2019), 801-834.  doi: 10.1002/cpa.21797.  Google Scholar

[7]

Y. Deng and P. Germain, Growth of solutions to NLS on irrational tori, Int. Math. Res. Not. IMRN, 2019 (2019), 2919-2950.  doi: 10.1093/imrn/rnx210.  Google Scholar

[8]

Y. DengP. Germain and L. Guth, Strichartz estimates for the Schrödinger equation on irrational tori, J. Funct. Anal., 273 (2017), 2846-2869.  doi: 10.1016/j.jfa.2017.05.011.  Google Scholar

[9]

R. Denk and R. Schnaubelt, A structurally damped plate equation with Dirichlet–Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353.  doi: 10.1016/j.jde.2015.02.043.  Google Scholar

[10]

E. Emmrich and M. Thalhammer, A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization, Nonlinearity, 24 (2011), 2523-2546.  doi: 10.1088/0951-7715/24/9/008.  Google Scholar

[11]

R. Feola and F. Giuliani, Quasi-periodic traveling waves on an infinitely deep fluid under gravity, preprint, arXiv: 2005.08280. Google Scholar

[12]

L. Herrmann, Vibration of the Euler–Bernoulli beam with allowance for dampings, in Proc. World Congr. Eng., London, UK, (2008), 901–904. Google Scholar

[13]

R. Imekraz, Long time existence for the semi-linear beam equation on irrational tori of dimension two, Nonlinearity, 29 (2016), 3067-3102.  doi: 10.1088/0951-7715/29/10/3067.  Google Scholar

[14]

A. Jenkins, Self-oscillation, Phys. Rep., 525 (2013), 167-222.  doi: 10.1016/j.physrep.2012.10.007.  Google Scholar

[15]

F. Kogelbauer and G. Haller, Rigorous model reduction for a damped-forced nonlinear beam model: An infinite-dimensional analysis, J. Nonlinear Sci., 28 (2018), 1109-1150.  doi: 10.1007/s00332-018-9443-4.  Google Scholar

[16]

N. Kosovalić, Quasi-periodic self-excited travelling waves for damped beam equations, J. Differential Equations, 265 (2018), 2171-2190.  doi: 10.1016/j.jde.2018.04.022.  Google Scholar

[17]

N. Kosovalić and B. Pigott, Self-excited vibrations for damped and delayed 1-dimensional wave equations, J. Dynam. Differential Equations, 31 (2019), 129-152.  doi: 10.1007/s10884-018-9654-2.  Google Scholar

[18]

K. Liu and Z. Liu, Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., 36 (1998), 1086-1098.  doi: 10.1137/S0363012996310703.  Google Scholar

[19]

A. Longtin and J. G. Milton, Modelling autonomous oscillations in the human pupil light reflex using non-linear delay-differential equations, Bull. Math. Biol., 51 (1989), 605-624.   Google Scholar

[20]

D. Takács and G. Stépán, Experiments on quasiperiodic wheel shimmy, J. Comput. Nonlinear Dynam., 4 (2009), 031007. Google Scholar

[21]

H. K. Wang and G. Chen, Asymptotic locations of eigenfrequencies of Euler–Bernoulli beam with nonhomogeneous structural and viscous damping coefficients, SIAM J. Control Optim., 29 (1991), 347-367.  doi: 10.1137/0329019.  Google Scholar

[22]

W. Weaver, Jr., S. P. Timoshenko and D. H. Young, Vibration Problems in Engineering, 5$^{nd}$ edition, John Wiley & Sons Limited, 1990. Google Scholar

[23]

J. Wilkening and X. Zhao, Quasi-periodic traveling gravity-capillary waves, preprint, arXiv: 2002.09487. Google Scholar

[1]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[2]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[3]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[4]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[5]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[6]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[7]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[8]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Koichiro Naito. Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 449-488. doi: 10.3934/dcds.2004.11.449

[11]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[12]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[13]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[14]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[15]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[16]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[17]

Michela Procesi. Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 541-552. doi: 10.3934/dcds.2005.13.541

[18]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[19]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[20]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

2020 Impact Factor: 1.327

Article outline

[Back to Top]