doi: 10.3934/dcdsb.2021078

Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain

1. 

Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China

* Corresponding author: Bijun Zuo

Received  September 2020 Revised  December 2020 Published  March 2021

In this paper, we study the energy equality for weak solutions to the 3D homogeneous incompressible magnetohydrodynamic equations with viscosity and magnetic diffusion in a bounded domain. Two types of regularity conditions are imposed on weak solutions to ensure the energy equality. For the first type, some global integrability condition for the velocity $ \mathbf u $ is required, while for the magnetic field $ \mathbf b $ and the magnetic pressure $ \pi $, some suitable integrability conditions near the boundary are sufficient. In contrast with the first type, the second type claims that if some additional interior integrability is imposed on $ \mathbf b $, then the regularity on $ \mathbf u $ can be relaxed.

Citation: Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021078
References:
[1]

I. AkramovT. DebiecJ. Skipper and E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789-811.  doi: 10.2140/apde.2020.13.789.  Google Scholar

[2]

C. Bardos and E. S. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), 197-207.  doi: 10.1007/s00205-017-1189-x.  Google Scholar

[3]

C. BardosE. S. Titi and E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Comm. Math. Phys., 370 (2019), 291-310.  doi: 10.1007/s00220-019-03493-6.  Google Scholar

[4]

R. E. CaflischI. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.  doi: 10.1007/s002200050067.  Google Scholar

[5]

M. ChenZ. LiangD. Wang and R. Xu, Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363-1385.  doi: 10.1137/19M1287213.  Google Scholar

[6]

R. M. Chen and C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131 (2019), 1-16.  doi: 10.1016/j.matpur.2019.02.003.  Google Scholar

[7]

A. CheskidovP. ConstantinS. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar

[8]

P. Constantin and W. E and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744.  Google Scholar

[9]

T. D. Drivas and H. Q. Nguyen, Onsager's conjecture and anomalous dissipation on domains with doundary, SIAM J. Math. Anal., 50 (2018), 4785-4811.  doi: 10.1137/18M1178864.  Google Scholar

[10]

J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar

[11]

L. Escauriaza and S. Montaner, Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 49-63.  doi: 10.4171/RLM/751.  Google Scholar

[12]

G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222-240.  doi: 10.1016/0167-2789(94)90117-1.  Google Scholar

[13] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford, 2004.   Google Scholar
[14]

E. FeireislP. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.  doi: 10.1007/s00205-016-1060-5.  Google Scholar

[15]

A. Hasegawa, Self-organization processes in continous media, Adv. in Physics, 34 (1985), 1-42.  doi: 10.1080/00018738500101721.  Google Scholar

[16]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[17]

E. Kang and J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681-2689.  doi: 10.1088/0951-7715/20/11/011.  Google Scholar

[18]

A. Kufner, O. John and S. Fu${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$ík, Function Spaces, Academia, Prague, 1977.  Google Scholar

[19]

I. Lacroix-Violet and A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191-210.  doi: 10.1016/j.matpur.2017.12.002.  Google Scholar

[20]

T. M. Leslie and R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differential Equations, 261 (2016), 3719-3733.  doi: 10.1016/j.jde.2016.06.001.  Google Scholar

[21]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[22]

Q.-H. Nguyen and P.-T. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207-213.  doi: 10.1007/s00332-018-9483-9.  Google Scholar

[23]

Q.-H. NguyenP.-T. Nguyen and B. Q. Tang, Energy conservation for inhomogeneous incompressible and compressible Euler equations, J. Differential Equations, 269 (2020), 7171-7210.  doi: 10.1016/j.jde.2020.05.025.  Google Scholar

[24]

Q.-H. NguyenP.-T. Nguyen and B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206-4231.  doi: 10.1088/1361-6544/ab28ae.  Google Scholar

[25]

L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6, (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), (1949), 279–287. doi: 10.1007/BF02780991.  Google Scholar

[26]

H. PolitanoA. Pouquet and P.-L. Sulem, Current and votticity dynamics in three-dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2 (1995), 2931-2939.  doi: 10.1063/1.871473.  Google Scholar

[27]

J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problems. Proceedings of the Symposium, Madison, Wisconsin, 1962. University of Wisconsin Press, Madison, Wisconsin, 69-98, 1963.  Google Scholar

[28]

M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948-954.  doi: 10.1137/0505092.  Google Scholar

[29]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[30]

T. Wang, X. Zhao, Y. Chen and M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373, 18 pp. doi: 10.1016/j.jmaa.2019.07.063.  Google Scholar

[31]

Y. Wang and B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differential Equations, 268 (2020), 4079-4101.  doi: 10.1016/j.jde.2019.10.045.  Google Scholar

[32]

C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, arXiv: 1604.05697. Google Scholar

[33]

C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073-1087.  doi: 10.1007/s00205-017-1121-4.  Google Scholar

[34]

C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, arXiv: 1802.07661. Google Scholar

[35]

X. Yu, A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22 (2009), 913-922.  doi: 10.1088/0951-7715/22/4/012.  Google Scholar

[36]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

show all references

References:
[1]

I. AkramovT. DebiecJ. Skipper and E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789-811.  doi: 10.2140/apde.2020.13.789.  Google Scholar

[2]

C. Bardos and E. S. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), 197-207.  doi: 10.1007/s00205-017-1189-x.  Google Scholar

[3]

C. BardosE. S. Titi and E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Comm. Math. Phys., 370 (2019), 291-310.  doi: 10.1007/s00220-019-03493-6.  Google Scholar

[4]

R. E. CaflischI. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.  doi: 10.1007/s002200050067.  Google Scholar

[5]

M. ChenZ. LiangD. Wang and R. Xu, Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363-1385.  doi: 10.1137/19M1287213.  Google Scholar

[6]

R. M. Chen and C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131 (2019), 1-16.  doi: 10.1016/j.matpur.2019.02.003.  Google Scholar

[7]

A. CheskidovP. ConstantinS. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar

[8]

P. Constantin and W. E and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744.  Google Scholar

[9]

T. D. Drivas and H. Q. Nguyen, Onsager's conjecture and anomalous dissipation on domains with doundary, SIAM J. Math. Anal., 50 (2018), 4785-4811.  doi: 10.1137/18M1178864.  Google Scholar

[10]

J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar

[11]

L. Escauriaza and S. Montaner, Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 49-63.  doi: 10.4171/RLM/751.  Google Scholar

[12]

G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222-240.  doi: 10.1016/0167-2789(94)90117-1.  Google Scholar

[13] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford, 2004.   Google Scholar
[14]

E. FeireislP. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.  doi: 10.1007/s00205-016-1060-5.  Google Scholar

[15]

A. Hasegawa, Self-organization processes in continous media, Adv. in Physics, 34 (1985), 1-42.  doi: 10.1080/00018738500101721.  Google Scholar

[16]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[17]

E. Kang and J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681-2689.  doi: 10.1088/0951-7715/20/11/011.  Google Scholar

[18]

A. Kufner, O. John and S. Fu${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$ík, Function Spaces, Academia, Prague, 1977.  Google Scholar

[19]

I. Lacroix-Violet and A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191-210.  doi: 10.1016/j.matpur.2017.12.002.  Google Scholar

[20]

T. M. Leslie and R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differential Equations, 261 (2016), 3719-3733.  doi: 10.1016/j.jde.2016.06.001.  Google Scholar

[21]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[22]

Q.-H. Nguyen and P.-T. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207-213.  doi: 10.1007/s00332-018-9483-9.  Google Scholar

[23]

Q.-H. NguyenP.-T. Nguyen and B. Q. Tang, Energy conservation for inhomogeneous incompressible and compressible Euler equations, J. Differential Equations, 269 (2020), 7171-7210.  doi: 10.1016/j.jde.2020.05.025.  Google Scholar

[24]

Q.-H. NguyenP.-T. Nguyen and B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206-4231.  doi: 10.1088/1361-6544/ab28ae.  Google Scholar

[25]

L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6, (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), (1949), 279–287. doi: 10.1007/BF02780991.  Google Scholar

[26]

H. PolitanoA. Pouquet and P.-L. Sulem, Current and votticity dynamics in three-dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2 (1995), 2931-2939.  doi: 10.1063/1.871473.  Google Scholar

[27]

J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problems. Proceedings of the Symposium, Madison, Wisconsin, 1962. University of Wisconsin Press, Madison, Wisconsin, 69-98, 1963.  Google Scholar

[28]

M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948-954.  doi: 10.1137/0505092.  Google Scholar

[29]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[30]

T. Wang, X. Zhao, Y. Chen and M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373, 18 pp. doi: 10.1016/j.jmaa.2019.07.063.  Google Scholar

[31]

Y. Wang and B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differential Equations, 268 (2020), 4079-4101.  doi: 10.1016/j.jde.2019.10.045.  Google Scholar

[32]

C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, arXiv: 1604.05697. Google Scholar

[33]

C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073-1087.  doi: 10.1007/s00205-017-1121-4.  Google Scholar

[34]

C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, arXiv: 1802.07661. Google Scholar

[35]

X. Yu, A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22 (2009), 913-922.  doi: 10.1088/0951-7715/22/4/012.  Google Scholar

[36]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[1]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[4]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[5]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[6]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[7]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[10]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[11]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[12]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028

[13]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[14]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[15]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[16]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[17]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[18]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[19]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[20]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (32)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]