-
Previous Article
Bifurcation in the almost periodic $ 2 $D Ricker map
- DCDS-B Home
- This Issue
-
Next Article
High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation
Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain
1. | Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China |
In this paper, we study the energy equality for weak solutions to the 3D homogeneous incompressible magnetohydrodynamic equations with viscosity and magnetic diffusion in a bounded domain. Two types of regularity conditions are imposed on weak solutions to ensure the energy equality. For the first type, some global integrability condition for the velocity $ \mathbf u $ is required, while for the magnetic field $ \mathbf b $ and the magnetic pressure $ \pi $, some suitable integrability conditions near the boundary are sufficient. In contrast with the first type, the second type claims that if some additional interior integrability is imposed on $ \mathbf b $, then the regularity on $ \mathbf u $ can be relaxed.
References:
[1] |
I. Akramov, T. Debiec, J. Skipper and E. Wiedemann,
Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789-811.
doi: 10.2140/apde.2020.13.789. |
[2] |
C. Bardos and E. S. Titi,
Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), 197-207.
doi: 10.1007/s00205-017-1189-x. |
[3] |
C. Bardos, E. S. Titi and E. Wiedemann,
Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Comm. Math. Phys., 370 (2019), 291-310.
doi: 10.1007/s00220-019-03493-6. |
[4] |
R. E. Caflisch, I. Klapper and G. Steele,
Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.
doi: 10.1007/s002200050067. |
[5] |
M. Chen, Z. Liang, D. Wang and R. Xu,
Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363-1385.
doi: 10.1137/19M1287213. |
[6] |
R. M. Chen and C. Yu,
Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131 (2019), 1-16.
doi: 10.1016/j.matpur.2019.02.003. |
[7] |
A. Cheskidov, P. Constantin, S. Friedlander and R. Shvydkoy,
Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.
doi: 10.1088/0951-7715/21/6/005. |
[8] |
P. Constantin and W. E and E. S. Titi, Onsager's conjecture on the energy conservation for
solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209.
doi: 10.1007/BF02099744. |
[9] |
T. D. Drivas and H. Q. Nguyen,
Onsager's conjecture and anomalous dissipation on domains with doundary, SIAM J. Math. Anal., 50 (2018), 4785-4811.
doi: 10.1137/18M1178864. |
[10] |
J. Duchon and R. Robert,
Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.
doi: 10.1088/0951-7715/13/1/312. |
[11] |
L. Escauriaza and S. Montaner,
Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 49-63.
doi: 10.4171/RLM/751. |
[12] |
G. L. Eyink,
Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222-240.
doi: 10.1016/0167-2789(94)90117-1. |
[13] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford, 2004.
![]() |
[14] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann,
Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.
doi: 10.1007/s00205-016-1060-5. |
[15] |
A. Hasegawa,
Self-organization processes in continous media, Adv. in Physics, 34 (1985), 1-42.
doi: 10.1080/00018738500101721. |
[16] |
C. He and Z. Xin,
On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.
doi: 10.1016/j.jde.2004.07.002. |
[17] |
E. Kang and J. Lee,
Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681-2689.
doi: 10.1088/0951-7715/20/11/011. |
[18] |
A. Kufner, O. John and S. Fu${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$ík, Function Spaces, Academia, Prague, 1977. |
[19] |
I. Lacroix-Violet and A. Vasseur,
Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191-210.
doi: 10.1016/j.matpur.2017.12.002. |
[20] |
T. M. Leslie and R. Shvydkoy,
The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differential Equations, 261 (2016), 3719-3733.
doi: 10.1016/j.jde.2016.06.001. |
[21] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models. Oxford
Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1996. |
[22] |
Q.-H. Nguyen and P.-T. Nguyen,
Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207-213.
doi: 10.1007/s00332-018-9483-9. |
[23] |
Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang,
Energy conservation for inhomogeneous incompressible and compressible Euler equations, J. Differential Equations, 269 (2020), 7171-7210.
doi: 10.1016/j.jde.2020.05.025. |
[24] |
Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang,
Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206-4231.
doi: 10.1088/1361-6544/ab28ae. |
[25] |
L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6, (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), (1949), 279–287.
doi: 10.1007/BF02780991. |
[26] |
H. Politano, A. Pouquet and P.-L. Sulem,
Current and votticity dynamics in three-dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2 (1995), 2931-2939.
doi: 10.1063/1.871473. |
[27] |
J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problems.
Proceedings of the Symposium, Madison, Wisconsin, 1962. University of Wisconsin Press,
Madison, Wisconsin, 69-98, 1963. |
[28] |
M. Shinbrot,
The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948-954.
doi: 10.1137/0505092. |
[29] |
J. Simon,
Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[30] |
T. Wang, X. Zhao, Y. Chen and M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373, 18 pp.
doi: 10.1016/j.jmaa.2019.07.063. |
[31] |
Y. Wang and B. Zuo,
Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differential Equations, 268 (2020), 4079-4101.
doi: 10.1016/j.jde.2019.10.045. |
[32] |
C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, arXiv: 1604.05697. Google Scholar |
[33] |
C. Yu,
Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073-1087.
doi: 10.1007/s00205-017-1121-4. |
[34] |
C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, arXiv: 1802.07661. Google Scholar |
[35] |
X. Yu,
A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22 (2009), 913-922.
doi: 10.1088/0951-7715/22/4/012. |
[36] |
Y. Zhou,
Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.
doi: 10.3934/dcds.2005.12.881. |
show all references
References:
[1] |
I. Akramov, T. Debiec, J. Skipper and E. Wiedemann,
Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789-811.
doi: 10.2140/apde.2020.13.789. |
[2] |
C. Bardos and E. S. Titi,
Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), 197-207.
doi: 10.1007/s00205-017-1189-x. |
[3] |
C. Bardos, E. S. Titi and E. Wiedemann,
Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Comm. Math. Phys., 370 (2019), 291-310.
doi: 10.1007/s00220-019-03493-6. |
[4] |
R. E. Caflisch, I. Klapper and G. Steele,
Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.
doi: 10.1007/s002200050067. |
[5] |
M. Chen, Z. Liang, D. Wang and R. Xu,
Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363-1385.
doi: 10.1137/19M1287213. |
[6] |
R. M. Chen and C. Yu,
Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131 (2019), 1-16.
doi: 10.1016/j.matpur.2019.02.003. |
[7] |
A. Cheskidov, P. Constantin, S. Friedlander and R. Shvydkoy,
Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.
doi: 10.1088/0951-7715/21/6/005. |
[8] |
P. Constantin and W. E and E. S. Titi, Onsager's conjecture on the energy conservation for
solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209.
doi: 10.1007/BF02099744. |
[9] |
T. D. Drivas and H. Q. Nguyen,
Onsager's conjecture and anomalous dissipation on domains with doundary, SIAM J. Math. Anal., 50 (2018), 4785-4811.
doi: 10.1137/18M1178864. |
[10] |
J. Duchon and R. Robert,
Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.
doi: 10.1088/0951-7715/13/1/312. |
[11] |
L. Escauriaza and S. Montaner,
Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 49-63.
doi: 10.4171/RLM/751. |
[12] |
G. L. Eyink,
Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222-240.
doi: 10.1016/0167-2789(94)90117-1. |
[13] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford, 2004.
![]() |
[14] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann,
Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.
doi: 10.1007/s00205-016-1060-5. |
[15] |
A. Hasegawa,
Self-organization processes in continous media, Adv. in Physics, 34 (1985), 1-42.
doi: 10.1080/00018738500101721. |
[16] |
C. He and Z. Xin,
On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.
doi: 10.1016/j.jde.2004.07.002. |
[17] |
E. Kang and J. Lee,
Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681-2689.
doi: 10.1088/0951-7715/20/11/011. |
[18] |
A. Kufner, O. John and S. Fu${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$ík, Function Spaces, Academia, Prague, 1977. |
[19] |
I. Lacroix-Violet and A. Vasseur,
Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191-210.
doi: 10.1016/j.matpur.2017.12.002. |
[20] |
T. M. Leslie and R. Shvydkoy,
The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differential Equations, 261 (2016), 3719-3733.
doi: 10.1016/j.jde.2016.06.001. |
[21] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models. Oxford
Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1996. |
[22] |
Q.-H. Nguyen and P.-T. Nguyen,
Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207-213.
doi: 10.1007/s00332-018-9483-9. |
[23] |
Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang,
Energy conservation for inhomogeneous incompressible and compressible Euler equations, J. Differential Equations, 269 (2020), 7171-7210.
doi: 10.1016/j.jde.2020.05.025. |
[24] |
Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang,
Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206-4231.
doi: 10.1088/1361-6544/ab28ae. |
[25] |
L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6, (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), (1949), 279–287.
doi: 10.1007/BF02780991. |
[26] |
H. Politano, A. Pouquet and P.-L. Sulem,
Current and votticity dynamics in three-dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2 (1995), 2931-2939.
doi: 10.1063/1.871473. |
[27] |
J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problems.
Proceedings of the Symposium, Madison, Wisconsin, 1962. University of Wisconsin Press,
Madison, Wisconsin, 69-98, 1963. |
[28] |
M. Shinbrot,
The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948-954.
doi: 10.1137/0505092. |
[29] |
J. Simon,
Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[30] |
T. Wang, X. Zhao, Y. Chen and M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373, 18 pp.
doi: 10.1016/j.jmaa.2019.07.063. |
[31] |
Y. Wang and B. Zuo,
Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differential Equations, 268 (2020), 4079-4101.
doi: 10.1016/j.jde.2019.10.045. |
[32] |
C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, arXiv: 1604.05697. Google Scholar |
[33] |
C. Yu,
Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073-1087.
doi: 10.1007/s00205-017-1121-4. |
[34] |
C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, arXiv: 1802.07661. Google Scholar |
[35] |
X. Yu,
A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22 (2009), 913-922.
doi: 10.1088/0951-7715/22/4/012. |
[36] |
Y. Zhou,
Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.
doi: 10.3934/dcds.2005.12.881. |
[1] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[2] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[3] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[4] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[5] |
Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246 |
[6] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[7] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[8] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[9] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[10] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[11] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[12] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[13] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[14] |
Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042 |
[15] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[16] |
Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033 |
[17] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397 |
[18] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[19] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[20] |
Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]