doi: 10.3934/dcdsb.2021079

Normal deviation of synchronization of stochastic coupled systems

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding author: Meiling Zhao

Received  October 2020 Revised  January 2021 Published  March 2021

Fund Project: The authors are supported by NSFs of China (No.11271013, 11471340, 10901065) and the Fundamental Research Funds for the Central Universities, HUST: 2016YXMS003, 2014TS066

This paper will prove the normal deviation of the synchronization of stochastic coupled system. According to the relationship between the stationary solution and the general solution, the martingale method is used to prove the normal deviation of the fixed initial value of the multi-scale system, thereby obtaining the normal deviation of the stationary solution. At the same time, with the relationship between the synchronized system and the multi-scale system, the normal deviation of the synchronization is obtained.

Citation: Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021079
References:
[1]

V. S. AfraimovichS. N. Chow and J. K. Hale, Synchronization in lattices of coupled oscillators, Lattice dynamics (Paris, 1995). Phys. D, 103 (1997), 442-451.  doi: 10.1016/S0167-2789(96)00276-X.  Google Scholar

[2]

V. S. Afraimovich and W.-W. Lin, Synchronization in lattices of coupled oscillators with neumann/periodic boundary conditions, Dynam. Stability Systems, 13 (1998), 237-264.  doi: 10.1080/02681119808806263.  Google Scholar

[3]

S. Al-AzzawiJ. Liu and X. Liu, Convergence rate of synchronization of systems with additive noise, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 227-245.  doi: 10.3934/dcdsb.2017012.  Google Scholar

[4]

L. Arnold, Random Dynamical Systems, Springer monographs in mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[5]

H. Bessaih, M. J. Garrido-Atienza, V. Köpp, B. Schmalfußand M. Yang, Synchronization of stochastic lattice equations, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 36, 25 pp. doi: 10.1007/s00030-020-00640-0.  Google Scholar

[6]

T. Caraballo and P. E. Kloeden, The persistence of synchronization under environmental noise, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2257-2267.  doi: 10.1098/rspa.2005.1484.  Google Scholar

[7]

T. CaraballoP. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise, Stoch. Dyn., 8 (2008), 139-154.  doi: 10.1142/S0219493708002184.  Google Scholar

[8]

S. Cerrai, Normal deviations from the averaged motion for some reaction-diffusion equations with fast oscillating perturbation, J. Math. Pures Appl., 91 (2009), 614-647.  doi: 10.1016/j.matpur.2009.04.007.  Google Scholar

[9] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[10]

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9.  Google Scholar

[11]

H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Comm. Math. Phys., 65 (1979), 97-128.  doi: 10.1007/BF01225144.  Google Scholar

[12]

R. Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter, Theory of Probability and Its Applications, 11 (1966), 118-125.   Google Scholar

[13]

Z. Li and J. Liu, Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5709-5736.  doi: 10.3934/dcdsb.2019103.  Google Scholar

[14]

Z. Li and J. Liu, Synchronization and averaging principle of stationary solutions for stochastic differential equations, Potential Analysis, 6 (2020). Google Scholar

[15]

D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., 8 (2010), 999-1020.  doi: 10.4310/CMS.2010.v8.n4.a11.  Google Scholar

[16]

B. Øksendal, Stochastic Differential Equations, sixth ed., Springer, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar

[17]

M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 43-47.  doi: 10.1073/pnas.42.1.43.  Google Scholar

[18]

B. Schmalfuss and K. R. Schneider, Invariant manifolds for random dynamical systems with slow and fast variables, J. Dynam. Differential Equations, 20 (2008), 133-164.  doi: 10.1007/s10884-007-9089-7.  Google Scholar

[19]

Z. ShenS. Zhou and X. Han, Synchronization of coupled stochastic systems with multiplicative noise, Stoch. Dyn., 10 (2010), 407-428.  doi: 10.1142/S0219493710003029.  Google Scholar

[20]

A. N. Shiryaev, Probability, second ed., Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4757-2539-1.  Google Scholar

[21]

S. R. S. Varadhan, Stochastic Processes. Courant Lecture Notes in Mathematics, 16., Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2007. doi: 10.1090/cln/016.  Google Scholar

[22]

V. A. Volkonski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$ and Yu. A. Rozanov, Some limit theorems for random functions, Theor. Probability Appl., 4 (1959), 178-197.  doi: 10.1137/1104015.  Google Scholar

[23]

W. Wang and A. J. Roberts, Average and deviation for slow-fast stochastic partial differential equations, J. Differential Equations, 253 (2012), 1265-1286.  doi: 10.1016/j.jde.2012.05.011.  Google Scholar

show all references

References:
[1]

V. S. AfraimovichS. N. Chow and J. K. Hale, Synchronization in lattices of coupled oscillators, Lattice dynamics (Paris, 1995). Phys. D, 103 (1997), 442-451.  doi: 10.1016/S0167-2789(96)00276-X.  Google Scholar

[2]

V. S. Afraimovich and W.-W. Lin, Synchronization in lattices of coupled oscillators with neumann/periodic boundary conditions, Dynam. Stability Systems, 13 (1998), 237-264.  doi: 10.1080/02681119808806263.  Google Scholar

[3]

S. Al-AzzawiJ. Liu and X. Liu, Convergence rate of synchronization of systems with additive noise, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 227-245.  doi: 10.3934/dcdsb.2017012.  Google Scholar

[4]

L. Arnold, Random Dynamical Systems, Springer monographs in mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[5]

H. Bessaih, M. J. Garrido-Atienza, V. Köpp, B. Schmalfußand M. Yang, Synchronization of stochastic lattice equations, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 36, 25 pp. doi: 10.1007/s00030-020-00640-0.  Google Scholar

[6]

T. Caraballo and P. E. Kloeden, The persistence of synchronization under environmental noise, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2257-2267.  doi: 10.1098/rspa.2005.1484.  Google Scholar

[7]

T. CaraballoP. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise, Stoch. Dyn., 8 (2008), 139-154.  doi: 10.1142/S0219493708002184.  Google Scholar

[8]

S. Cerrai, Normal deviations from the averaged motion for some reaction-diffusion equations with fast oscillating perturbation, J. Math. Pures Appl., 91 (2009), 614-647.  doi: 10.1016/j.matpur.2009.04.007.  Google Scholar

[9] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[10]

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9.  Google Scholar

[11]

H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Comm. Math. Phys., 65 (1979), 97-128.  doi: 10.1007/BF01225144.  Google Scholar

[12]

R. Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter, Theory of Probability and Its Applications, 11 (1966), 118-125.   Google Scholar

[13]

Z. Li and J. Liu, Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5709-5736.  doi: 10.3934/dcdsb.2019103.  Google Scholar

[14]

Z. Li and J. Liu, Synchronization and averaging principle of stationary solutions for stochastic differential equations, Potential Analysis, 6 (2020). Google Scholar

[15]

D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., 8 (2010), 999-1020.  doi: 10.4310/CMS.2010.v8.n4.a11.  Google Scholar

[16]

B. Øksendal, Stochastic Differential Equations, sixth ed., Springer, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar

[17]

M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 43-47.  doi: 10.1073/pnas.42.1.43.  Google Scholar

[18]

B. Schmalfuss and K. R. Schneider, Invariant manifolds for random dynamical systems with slow and fast variables, J. Dynam. Differential Equations, 20 (2008), 133-164.  doi: 10.1007/s10884-007-9089-7.  Google Scholar

[19]

Z. ShenS. Zhou and X. Han, Synchronization of coupled stochastic systems with multiplicative noise, Stoch. Dyn., 10 (2010), 407-428.  doi: 10.1142/S0219493710003029.  Google Scholar

[20]

A. N. Shiryaev, Probability, second ed., Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4757-2539-1.  Google Scholar

[21]

S. R. S. Varadhan, Stochastic Processes. Courant Lecture Notes in Mathematics, 16., Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2007. doi: 10.1090/cln/016.  Google Scholar

[22]

V. A. Volkonski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$ and Yu. A. Rozanov, Some limit theorems for random functions, Theor. Probability Appl., 4 (1959), 178-197.  doi: 10.1137/1104015.  Google Scholar

[23]

W. Wang and A. J. Roberts, Average and deviation for slow-fast stochastic partial differential equations, J. Differential Equations, 253 (2012), 1265-1286.  doi: 10.1016/j.jde.2012.05.011.  Google Scholar

[1]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[2]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[3]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[4]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[9]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[12]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[13]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[14]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[17]

Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3869-3902. doi: 10.3934/dcds.2021020

[18]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[19]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[20]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

2019 Impact Factor: 1.27

Article outline

[Back to Top]