
-
Previous Article
Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control
- DCDS-B Home
- This Issue
-
Next Article
Normal deviation of synchronization of stochastic coupled systems
Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two
Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Fujian 362021, China |
In this paper we consider an $ n $ dimensional piecewise smooth dynamical system. This system has a co-dimension 2 switching manifold $ \Sigma $ which is an intersection of two hyperplanes $ \Sigma_1 $ and $ \Sigma_2 $. We investigate the relation between periodic orbit of PWS system and periodic orbit of its double regularized system. If this PWS system has an asymptotically stable sliding periodic orbit(including type Ⅰ and type Ⅱ), we establish conditions to ensure that also a double regularization of the given system has a unique, asymptotically stable, periodic orbit in a neighbourhood of $ \gamma $, converging to $ \gamma $ as both of the two regularization parameters go to $ 0 $ by applying implicit function theorem and geometric singular perturbation theory.
References:
[1] |
J. Alexander and T. Seidman,
Sliding modes in intersecting switching surfaces. I. Blending, Houston J. Math., 24 (1998), 545-569.
|
[2] |
M. Antali and G. Stepan,
Sliding and crossing dynamics in extended Filippov systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 823-858.
doi: 10.1137/17M1110328. |
[3] |
J. Awrejcewicz, M. Fe$\breve{c}$kan and P. Olejnik,
On continuous approximation of discontnuous systems, Nonlinear Anal., 62 (2005), 1317-1331.
doi: 10.1016/j.na.2005.04.033. |
[4] |
M. Di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci., 163, Springer-Verlag, London, 2008. |
[5] |
C. Bonet-Reves Reves, J. Larrosa and T. M-Seara,
Regularization around a generic codimension one fold-fold singularity, J. Differential Equations, 265 (2018), 1761-1838.
doi: 10.1016/j.jde.2018.04.047. |
[6] |
C. Bonet-Revés and T. M-Seara,
Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems, Discrete Contin. Dyn. Syst., 36 (2016), 3545-3601.
doi: 10.3934/dcds.2016.36.3545. |
[7] |
C. A. Buzzi, T. Carvalho and R. D. Euzébio,
On Poincaré-Bendixson Theorem and nontrivial minimal sets in planar nonsmooth vector fields, Publ. Mat., 62 (2018), 113-131.
doi: 10.5565/PUBLMAT6211806. |
[8] |
C. A. Buzzi, T. de Carvalho and P. R. da Silva,
Closed Poly-trajectories and Poincaré index of non-smooth vector fields on the plane, J. Dyn. Control. Sys., 19 (2013), 173-193.
doi: 10.1007/s10883-013-9169-4. |
[9] |
L. Dieci and F. Difonzo,
A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014), 161-179.
doi: 10.1016/j.cam.2013.10.055. |
[10] |
L. Dieci, T. Eirola and C. Elia,
Periodic orbits of planar discontinuous system under discretization, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2743-2762.
doi: 10.3934/dcdsb.2018103. |
[11] |
L. Dieci and C. Elia,
Periodic orbits for planar piecewise smooth systems with a line of discontinuity, J. Dynam. Differential Equations, 26 (2014), 1049-1078.
doi: 10.1007/s10884-014-9380-3. |
[12] |
L. Dieci and C. Elia,
Piecewise smooth systems near a codimension 2 discontinuity manifold: Can we say what should happen?, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1039-1068.
doi: 10.3934/dcdss.2016041. |
[13] |
L. Dieci and C. Elia,
Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2935-2950.
doi: 10.3934/dcdsb.2018112. |
[14] |
L. Dieci, C. Elia and L. Lopez,
A Filippov sliding vector field on an attracting codimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013), 1800-1832.
doi: 10.1016/j.jde.2012.11.007. |
[15] |
L. Dieci, C. Elia and L. Lopez,
Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb{R}^3$ and implications for stability of periodic orbits, J. Nonlinear Sci., 25 (2015), 1453-1471.
doi: 10.1007/s00332-015-9265-6. |
[16] |
L. Dieci, C. Elia and D. Pi,
Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3091-3112.
doi: 10.3934/dcdsb.2017165. |
[17] |
L. Dieci and L. Lopez,
Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simulation, 81 (2011), 932-953.
doi: 10.1016/j.matcom.2010.10.012. |
[18] |
L. Dieci and N. Guglielmi,
Regularizing piecewise smooth differential systems: Codimension 2 discontinuity surface, J. Dynam. Differential Equations, 25 (2013), 71-94.
doi: 10.1007/s10884-013-9287-4. |
[19] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[20] |
M. Guardia, T. M. Seara and M. A. Teixeira,
Generic bifurcations of low codimension of planar Filippov Systems, J. Differential Equations, 250 (2011), 1967-2023.
doi: 10.1016/j.jde.2010.11.016. |
[21] |
N. Gugliemi and E. Hairer,
Classification of hidden dynamics in discontinuous dynamical systems, SIAM J. Appl. Dyn. Syst., 14 (2015), 1454-1477.
doi: 10.1137/15100326X. |
[22] |
N. Gugliemi and E. Hairer,
Solutions leaving a codimension-2 sliding, Nolinear. Dyn., 88 (2017), 1427-1439.
doi: 10.1007/s11071-016-3320-1. |
[23] |
M. R. Jeffrey, Exit from sliding in piecewise-smooth flows: Deterministic vs. determinacy-breaking, Chaos, 26 (2016), 033108, 19 pp.
doi: 10.1063/1.4943386. |
[24] |
K. U. Kristiansen and S. J. Hogan,
Regularization of two-fold bifurations in planar piecewise smooth systems using blowup, SIAM J. Appl. Dyn. Syst., 14 (2015), 1731-1786.
doi: 10.1137/15M1009731. |
[25] |
R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 18, Springer-verlag, Berlin, 2004.
doi: 10.1007/978-3-540-44398-8. |
[26] |
J. Llibre, P. R. da Silva and M. A. Teixeira,
Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007), 309-331.
doi: 10.1007/s10884-006-9057-7. |
[27] |
J. Llibre, P. R. da Silva and M. A. Teixeira,
Sliding vector fields via slow-fast systems, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 851-869.
doi: 10.36045/bbms/1228486412. |
[28] |
J. Llibre, P. R. da Silva and M. A. Teixeira,
Study of singularities in nonsmooth dynamical systems via singular perturbation, SIAM. J. Applied Dynam. Sys., 8 (2009), 508-526.
doi: 10.1137/080722886. |
[29] |
D. Panazzolo and P. R. da Silva,
Regularization of discontinuous foliations: blowing up and sliding conditions via Fenichel theory, J. Differential Equations, 263 (2017), 8362-8390.
doi: 10.1016/j.jde.2017.08.042. |
[30] |
D. Pi,
Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two, Discrete Contin. Dyn. Syst.Ser. B, 24 (2019), 881-905.
doi: 10.3934/dcdsb.2018211. |
[31] |
D. Pi and X. Zhang, The sliding bifurcations in planar piecewise smooth differential systems, J. Dynam. Differential Equations, 25 (2013), 1001-1026.
doi: 10.1007/s10884-013-9327-0. |
[32] |
L. A. Sanchez,
Cones of rank 2 and the Poincaré-Bendixson property for a new class of monotone systems, J. Differential Equations, 246 (2009), 1978-1990.
doi: 10.1016/j.jde.2008.10.015. |
[33] |
H. Schiller and M. Arnold,
Convergence of continuous approximations for discontinuous ODEs, Appl. Numer. Math., 62 (2012), 1503-1514.
doi: 10.1016/j.apnum.2012.06.021. |
[34] |
J. Sotomayor and A. L. F. Machado,
Sructurally stable discontinuous vector fields on the plane, Qual. Theory of Dynamical Systems, 3 (2002), 227-250.
doi: 10.1007/BF02969339. |
[35] |
J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, International Conference on Differential Equations, Lisboa, (1995), World Sci. Publ., River Edge, NJ, 1998,207–223. |
[36] |
S. Tang, J. Liang, Y. Xiao and R. A. Cheke,
Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080.
doi: 10.1137/110847020. |
[37] |
W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Publications, Inc., New York, 1987. |
[38] |
J. Yang and L. Zhao,
Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations, J. Differential Equations, 264 (2018), 5734-5757.
doi: 10.1016/j.jde.2018.01.017. |
[39] |
H.-R. Zhu and H. L. Smith,
Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations, 110 (1994), 143-156.
doi: 10.1006/jdeq.1994.1063. |
show all references
References:
[1] |
J. Alexander and T. Seidman,
Sliding modes in intersecting switching surfaces. I. Blending, Houston J. Math., 24 (1998), 545-569.
|
[2] |
M. Antali and G. Stepan,
Sliding and crossing dynamics in extended Filippov systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 823-858.
doi: 10.1137/17M1110328. |
[3] |
J. Awrejcewicz, M. Fe$\breve{c}$kan and P. Olejnik,
On continuous approximation of discontnuous systems, Nonlinear Anal., 62 (2005), 1317-1331.
doi: 10.1016/j.na.2005.04.033. |
[4] |
M. Di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci., 163, Springer-Verlag, London, 2008. |
[5] |
C. Bonet-Reves Reves, J. Larrosa and T. M-Seara,
Regularization around a generic codimension one fold-fold singularity, J. Differential Equations, 265 (2018), 1761-1838.
doi: 10.1016/j.jde.2018.04.047. |
[6] |
C. Bonet-Revés and T. M-Seara,
Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems, Discrete Contin. Dyn. Syst., 36 (2016), 3545-3601.
doi: 10.3934/dcds.2016.36.3545. |
[7] |
C. A. Buzzi, T. Carvalho and R. D. Euzébio,
On Poincaré-Bendixson Theorem and nontrivial minimal sets in planar nonsmooth vector fields, Publ. Mat., 62 (2018), 113-131.
doi: 10.5565/PUBLMAT6211806. |
[8] |
C. A. Buzzi, T. de Carvalho and P. R. da Silva,
Closed Poly-trajectories and Poincaré index of non-smooth vector fields on the plane, J. Dyn. Control. Sys., 19 (2013), 173-193.
doi: 10.1007/s10883-013-9169-4. |
[9] |
L. Dieci and F. Difonzo,
A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014), 161-179.
doi: 10.1016/j.cam.2013.10.055. |
[10] |
L. Dieci, T. Eirola and C. Elia,
Periodic orbits of planar discontinuous system under discretization, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2743-2762.
doi: 10.3934/dcdsb.2018103. |
[11] |
L. Dieci and C. Elia,
Periodic orbits for planar piecewise smooth systems with a line of discontinuity, J. Dynam. Differential Equations, 26 (2014), 1049-1078.
doi: 10.1007/s10884-014-9380-3. |
[12] |
L. Dieci and C. Elia,
Piecewise smooth systems near a codimension 2 discontinuity manifold: Can we say what should happen?, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1039-1068.
doi: 10.3934/dcdss.2016041. |
[13] |
L. Dieci and C. Elia,
Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2935-2950.
doi: 10.3934/dcdsb.2018112. |
[14] |
L. Dieci, C. Elia and L. Lopez,
A Filippov sliding vector field on an attracting codimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013), 1800-1832.
doi: 10.1016/j.jde.2012.11.007. |
[15] |
L. Dieci, C. Elia and L. Lopez,
Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb{R}^3$ and implications for stability of periodic orbits, J. Nonlinear Sci., 25 (2015), 1453-1471.
doi: 10.1007/s00332-015-9265-6. |
[16] |
L. Dieci, C. Elia and D. Pi,
Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3091-3112.
doi: 10.3934/dcdsb.2017165. |
[17] |
L. Dieci and L. Lopez,
Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simulation, 81 (2011), 932-953.
doi: 10.1016/j.matcom.2010.10.012. |
[18] |
L. Dieci and N. Guglielmi,
Regularizing piecewise smooth differential systems: Codimension 2 discontinuity surface, J. Dynam. Differential Equations, 25 (2013), 71-94.
doi: 10.1007/s10884-013-9287-4. |
[19] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[20] |
M. Guardia, T. M. Seara and M. A. Teixeira,
Generic bifurcations of low codimension of planar Filippov Systems, J. Differential Equations, 250 (2011), 1967-2023.
doi: 10.1016/j.jde.2010.11.016. |
[21] |
N. Gugliemi and E. Hairer,
Classification of hidden dynamics in discontinuous dynamical systems, SIAM J. Appl. Dyn. Syst., 14 (2015), 1454-1477.
doi: 10.1137/15100326X. |
[22] |
N. Gugliemi and E. Hairer,
Solutions leaving a codimension-2 sliding, Nolinear. Dyn., 88 (2017), 1427-1439.
doi: 10.1007/s11071-016-3320-1. |
[23] |
M. R. Jeffrey, Exit from sliding in piecewise-smooth flows: Deterministic vs. determinacy-breaking, Chaos, 26 (2016), 033108, 19 pp.
doi: 10.1063/1.4943386. |
[24] |
K. U. Kristiansen and S. J. Hogan,
Regularization of two-fold bifurations in planar piecewise smooth systems using blowup, SIAM J. Appl. Dyn. Syst., 14 (2015), 1731-1786.
doi: 10.1137/15M1009731. |
[25] |
R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 18, Springer-verlag, Berlin, 2004.
doi: 10.1007/978-3-540-44398-8. |
[26] |
J. Llibre, P. R. da Silva and M. A. Teixeira,
Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007), 309-331.
doi: 10.1007/s10884-006-9057-7. |
[27] |
J. Llibre, P. R. da Silva and M. A. Teixeira,
Sliding vector fields via slow-fast systems, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 851-869.
doi: 10.36045/bbms/1228486412. |
[28] |
J. Llibre, P. R. da Silva and M. A. Teixeira,
Study of singularities in nonsmooth dynamical systems via singular perturbation, SIAM. J. Applied Dynam. Sys., 8 (2009), 508-526.
doi: 10.1137/080722886. |
[29] |
D. Panazzolo and P. R. da Silva,
Regularization of discontinuous foliations: blowing up and sliding conditions via Fenichel theory, J. Differential Equations, 263 (2017), 8362-8390.
doi: 10.1016/j.jde.2017.08.042. |
[30] |
D. Pi,
Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two, Discrete Contin. Dyn. Syst.Ser. B, 24 (2019), 881-905.
doi: 10.3934/dcdsb.2018211. |
[31] |
D. Pi and X. Zhang, The sliding bifurcations in planar piecewise smooth differential systems, J. Dynam. Differential Equations, 25 (2013), 1001-1026.
doi: 10.1007/s10884-013-9327-0. |
[32] |
L. A. Sanchez,
Cones of rank 2 and the Poincaré-Bendixson property for a new class of monotone systems, J. Differential Equations, 246 (2009), 1978-1990.
doi: 10.1016/j.jde.2008.10.015. |
[33] |
H. Schiller and M. Arnold,
Convergence of continuous approximations for discontinuous ODEs, Appl. Numer. Math., 62 (2012), 1503-1514.
doi: 10.1016/j.apnum.2012.06.021. |
[34] |
J. Sotomayor and A. L. F. Machado,
Sructurally stable discontinuous vector fields on the plane, Qual. Theory of Dynamical Systems, 3 (2002), 227-250.
doi: 10.1007/BF02969339. |
[35] |
J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, International Conference on Differential Equations, Lisboa, (1995), World Sci. Publ., River Edge, NJ, 1998,207–223. |
[36] |
S. Tang, J. Liang, Y. Xiao and R. A. Cheke,
Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080.
doi: 10.1137/110847020. |
[37] |
W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Publications, Inc., New York, 1987. |
[38] |
J. Yang and L. Zhao,
Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations, J. Differential Equations, 264 (2018), 5734-5757.
doi: 10.1016/j.jde.2018.01.017. |
[39] |
H.-R. Zhu and H. L. Smith,
Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations, 110 (1994), 143-156.
doi: 10.1006/jdeq.1994.1063. |


[1] |
Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211 |
[2] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368 |
[3] |
Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 |
[4] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[5] |
Yuan Chang, Yuzhen Bai. Limit cycle bifurcations by perturbing piecewise Hamiltonian systems with a nonregular switching line via multiple parameters. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022090 |
[6] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[7] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021264 |
[8] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[9] |
Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133 |
[10] |
Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041 |
[11] |
Wenye Liu, Maoan Han. Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022053 |
[12] |
Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 |
[13] |
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 |
[14] |
Wenjun Zhang, Bernd Krauskopf, Vivien Kirk. How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2825-2851. doi: 10.3934/dcds.2012.32.2825 |
[15] |
Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control and Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359 |
[16] |
Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381 |
[17] |
Simone Creo, Maria Rosaria Lancia, Alexander Nazarov, Paola Vernole. On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 57-64. doi: 10.3934/dcdss.2019004 |
[18] |
Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1 |
[19] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[20] |
Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]