• Previous Article
    Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases
doi: 10.3934/dcdsb.2021082
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Discrete-time dynamics of structured populations via Feller kernels

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

Received  August 2020 Revised  January 2021 Early access March 2021

Feller kernels are a concise means to formalize individual structural transitions in a structured discrete-time population model. An iteroparous populations (in which generations overlap) is considered where different kernels model the structural transitions for neonates and for older individuals. Other Feller kernels are used to model competition between individuals. The spectral radius of a suitable Feller kernel is established as basic turnover number that acts as threshold between population extinction and population persistence. If the basic turnover number exceeds one, the population shows various degrees of persistence that depend on the irreducibility and other properties of the transition kernels.

Citation: Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021082
References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition, Springer, Berlin Heidelberg 1999, 2006  Google Scholar

[2]

J. M. Cushing, On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., 5 (2011), 277-297.  doi: 10.1080/17513758.2010.491583.  Google Scholar

[3]

J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333.  doi: 10.1111/j.1939-7445.1994.tb00188.x.  Google Scholar

[4]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. Thieme, The 'cumulative' formulation of (physiologically) structured population models, in Evolution Equations, Control Theory, and Biomathematics (eds. Ph. Clément and G. Lumer), Marcel Dekker, 1994,145–154  Google Scholar

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction number $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365–382 doi: 10.1007/BF00178324.  Google Scholar

[6]

R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268, Correction to "Convergence of Baire measures", Stud. Math., 51 (1974), 275. doi: 10.4064/sm-27-3-251-268.  Google Scholar

[7]

R. M. Dudley, Real Analysis and Probability, sec. ed., Cambridge University Press, Cambridge 2002 doi: 10.1017/CBO9780511755347.  Google Scholar

[8]

E. A. EagerR. Rebarber and B. Tenhumberg, Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol., 76 (2014), 1809-1834.  doi: 10.1007/s11538-014-9978-y.  Google Scholar

[9]

S. P. Ellner, D. Z. Childs and M. Rees, Data-driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model, Springer, Cham, 2016. doi: 10.1007/978-3-319-28893-2.  Google Scholar

[10]

S. P. Ellner and M. Rees, Stochastic stable population growth in integral projection models: Theory and application, J. Math. Biol., 54 (2007), 227-256.  doi: 10.1007/s00285-006-0044-8.  Google Scholar

[11]

P. GwiazdaA. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 139-140.  doi: 10.1007/s11117-017-0503-z.  Google Scholar

[12]

S. C. Hille and D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371.  doi: 10.1007/s00020-008-1652-z.  Google Scholar

[13]

W. Jin and H. R. Thieme, An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete and Continuous Dynamical System - B, 21 (2016), 447-470.  doi: 10.3934/dcdsb.2016.21.447.  Google Scholar

[14]

M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986) 109–136. doi: 10.1016/0025-5564(86)90069-6.  Google Scholar

[15]

U. Krause, Positive Dynamical Systems in Siscrete Time. Theory, Models, and Applications, De Gruyter Studies in Mathematics, 62, De Gruyter, Berlin, 2015 doi: 10.1515/9783110365696.  Google Scholar

[16]

M. A. LewisN. G. Marculis and Z. Shen, Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics, J. Math. Biol., 77 (2018), 1649-1687.  doi: 10.1007/s00285-018-1206-1.  Google Scholar

[17]

B. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019 doi: 10.1007/978-3-030-29294-2.  Google Scholar

[19]

F. Lutscher and S. V. Petrovskii, The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn., 2 (2008), 55-63.  doi: 10.1080/17513750701769899.  Google Scholar

[20] J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, an Diego, 1999.   Google Scholar
[21]

T. E. X. MillerA. K. ShawB. D. Inouye and M. G. Neubert, Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.  doi: 10.1086/659628.  Google Scholar

[22]

J. Musgrave and F. Lutscher, Integrodifference equations in patchy landscapes II: Population level consequences, J. Math. Biol., 69 (2014), 617-658.  doi: 10.1007/s00285-013-0715-1.  Google Scholar

[23]

C. Poetzsche, Numerical dynamics of integrodifference equations: Global attractivity in a C0-setting, SIAM J. Numer. Anal., 57 (2019), 2121-2141.  doi: 10.1137/18M1214469.  Google Scholar

[24]

V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ (preprint) Google Scholar

[25]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence 2011 doi: 10.1090/gsm/118.  Google Scholar

[26]

H. R. Thieme, On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.  doi: 10.1007/BF01309313.  Google Scholar

[27]

H. R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144.  doi: 10.1007/s10884-015-9463-9.  Google Scholar

[28]

H. R. Thieme, From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol., 75 (2017), 783-804.  doi: 10.1007/s00285-017-1114-9.  Google Scholar

[29]

H. R. Thieme, Discrete-time population dynamics on the state space of measures, Math. Biosci. Engin., 17 (2020), 1168-1217.  doi: 10.3934/mbe.2020061.  Google Scholar

[30]

H. R. Thieme, Persistent discrete-time dynamics on measures, in Progress on Difference Equations and Discrete Dynamical Systems, (eds. Stephen Baigent, Saber Elaydi and Martin Bohner), 59-100, Springer Proceedings in Mathematics & Statistics 341, Springer Nature Switzerland AG, 2020 Google Scholar

[31]

H. R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, (preprint) Google Scholar

[32]

R. Wu and X.-Q. Zhao, Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations, 264 (2018), 6507-6534.  doi: 10.1016/j.jde.2018.01.039.  Google Scholar

[33]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003 doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition, Springer, Berlin Heidelberg 1999, 2006  Google Scholar

[2]

J. M. Cushing, On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., 5 (2011), 277-297.  doi: 10.1080/17513758.2010.491583.  Google Scholar

[3]

J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333.  doi: 10.1111/j.1939-7445.1994.tb00188.x.  Google Scholar

[4]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. Thieme, The 'cumulative' formulation of (physiologically) structured population models, in Evolution Equations, Control Theory, and Biomathematics (eds. Ph. Clément and G. Lumer), Marcel Dekker, 1994,145–154  Google Scholar

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction number $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365–382 doi: 10.1007/BF00178324.  Google Scholar

[6]

R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268, Correction to "Convergence of Baire measures", Stud. Math., 51 (1974), 275. doi: 10.4064/sm-27-3-251-268.  Google Scholar

[7]

R. M. Dudley, Real Analysis and Probability, sec. ed., Cambridge University Press, Cambridge 2002 doi: 10.1017/CBO9780511755347.  Google Scholar

[8]

E. A. EagerR. Rebarber and B. Tenhumberg, Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol., 76 (2014), 1809-1834.  doi: 10.1007/s11538-014-9978-y.  Google Scholar

[9]

S. P. Ellner, D. Z. Childs and M. Rees, Data-driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model, Springer, Cham, 2016. doi: 10.1007/978-3-319-28893-2.  Google Scholar

[10]

S. P. Ellner and M. Rees, Stochastic stable population growth in integral projection models: Theory and application, J. Math. Biol., 54 (2007), 227-256.  doi: 10.1007/s00285-006-0044-8.  Google Scholar

[11]

P. GwiazdaA. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 139-140.  doi: 10.1007/s11117-017-0503-z.  Google Scholar

[12]

S. C. Hille and D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371.  doi: 10.1007/s00020-008-1652-z.  Google Scholar

[13]

W. Jin and H. R. Thieme, An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete and Continuous Dynamical System - B, 21 (2016), 447-470.  doi: 10.3934/dcdsb.2016.21.447.  Google Scholar

[14]

M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986) 109–136. doi: 10.1016/0025-5564(86)90069-6.  Google Scholar

[15]

U. Krause, Positive Dynamical Systems in Siscrete Time. Theory, Models, and Applications, De Gruyter Studies in Mathematics, 62, De Gruyter, Berlin, 2015 doi: 10.1515/9783110365696.  Google Scholar

[16]

M. A. LewisN. G. Marculis and Z. Shen, Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics, J. Math. Biol., 77 (2018), 1649-1687.  doi: 10.1007/s00285-018-1206-1.  Google Scholar

[17]

B. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019 doi: 10.1007/978-3-030-29294-2.  Google Scholar

[19]

F. Lutscher and S. V. Petrovskii, The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn., 2 (2008), 55-63.  doi: 10.1080/17513750701769899.  Google Scholar

[20] J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, an Diego, 1999.   Google Scholar
[21]

T. E. X. MillerA. K. ShawB. D. Inouye and M. G. Neubert, Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.  doi: 10.1086/659628.  Google Scholar

[22]

J. Musgrave and F. Lutscher, Integrodifference equations in patchy landscapes II: Population level consequences, J. Math. Biol., 69 (2014), 617-658.  doi: 10.1007/s00285-013-0715-1.  Google Scholar

[23]

C. Poetzsche, Numerical dynamics of integrodifference equations: Global attractivity in a C0-setting, SIAM J. Numer. Anal., 57 (2019), 2121-2141.  doi: 10.1137/18M1214469.  Google Scholar

[24]

V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ (preprint) Google Scholar

[25]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence 2011 doi: 10.1090/gsm/118.  Google Scholar

[26]

H. R. Thieme, On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.  doi: 10.1007/BF01309313.  Google Scholar

[27]

H. R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144.  doi: 10.1007/s10884-015-9463-9.  Google Scholar

[28]

H. R. Thieme, From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol., 75 (2017), 783-804.  doi: 10.1007/s00285-017-1114-9.  Google Scholar

[29]

H. R. Thieme, Discrete-time population dynamics on the state space of measures, Math. Biosci. Engin., 17 (2020), 1168-1217.  doi: 10.3934/mbe.2020061.  Google Scholar

[30]

H. R. Thieme, Persistent discrete-time dynamics on measures, in Progress on Difference Equations and Discrete Dynamical Systems, (eds. Stephen Baigent, Saber Elaydi and Martin Bohner), 59-100, Springer Proceedings in Mathematics & Statistics 341, Springer Nature Switzerland AG, 2020 Google Scholar

[31]

H. R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, (preprint) Google Scholar

[32]

R. Wu and X.-Q. Zhao, Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations, 264 (2018), 6507-6534.  doi: 10.1016/j.jde.2018.01.039.  Google Scholar

[33]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003 doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[4]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[5]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[6]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[7]

Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$-season spatially periodic integro-difference models. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3443-3472. doi: 10.3934/dcds.2013.33.3443

[8]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[9]

Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077

[10]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[11]

Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915

[12]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021170

[13]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[14]

Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

[15]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[16]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[17]

Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031

[18]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[19]

Nina Lebedeva. Number of extremal subsets in Alexandrov spaces and rigidity. Electronic Research Announcements, 2014, 21: 120-125. doi: 10.3934/era.2014.21.120

[20]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

2020 Impact Factor: 1.327

Article outline

[Back to Top]