• Previous Article
    Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises
doi: 10.3934/dcdsb.2021082

Discrete-time dynamics of structured populations via Feller kernels

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

Received  August 2020 Revised  January 2021 Published  March 2021

Feller kernels are a concise means to formalize individual structural transitions in a structured discrete-time population model. An iteroparous populations (in which generations overlap) is considered where different kernels model the structural transitions for neonates and for older individuals. Other Feller kernels are used to model competition between individuals. The spectral radius of a suitable Feller kernel is established as basic turnover number that acts as threshold between population extinction and population persistence. If the basic turnover number exceeds one, the population shows various degrees of persistence that depend on the irreducibility and other properties of the transition kernels.

Citation: Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021082
References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition, Springer, Berlin Heidelberg 1999, 2006  Google Scholar

[2]

J. M. Cushing, On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., 5 (2011), 277-297.  doi: 10.1080/17513758.2010.491583.  Google Scholar

[3]

J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333.  doi: 10.1111/j.1939-7445.1994.tb00188.x.  Google Scholar

[4]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. Thieme, The 'cumulative' formulation of (physiologically) structured population models, in Evolution Equations, Control Theory, and Biomathematics (eds. Ph. Clément and G. Lumer), Marcel Dekker, 1994,145–154  Google Scholar

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction number $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365–382 doi: 10.1007/BF00178324.  Google Scholar

[6]

R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268, Correction to "Convergence of Baire measures", Stud. Math., 51 (1974), 275. doi: 10.4064/sm-27-3-251-268.  Google Scholar

[7]

R. M. Dudley, Real Analysis and Probability, sec. ed., Cambridge University Press, Cambridge 2002 doi: 10.1017/CBO9780511755347.  Google Scholar

[8]

E. A. EagerR. Rebarber and B. Tenhumberg, Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol., 76 (2014), 1809-1834.  doi: 10.1007/s11538-014-9978-y.  Google Scholar

[9]

S. P. Ellner, D. Z. Childs and M. Rees, Data-driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model, Springer, Cham, 2016. doi: 10.1007/978-3-319-28893-2.  Google Scholar

[10]

S. P. Ellner and M. Rees, Stochastic stable population growth in integral projection models: Theory and application, J. Math. Biol., 54 (2007), 227-256.  doi: 10.1007/s00285-006-0044-8.  Google Scholar

[11]

P. GwiazdaA. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 139-140.  doi: 10.1007/s11117-017-0503-z.  Google Scholar

[12]

S. C. Hille and D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371.  doi: 10.1007/s00020-008-1652-z.  Google Scholar

[13]

W. Jin and H. R. Thieme, An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete and Continuous Dynamical System - B, 21 (2016), 447-470.  doi: 10.3934/dcdsb.2016.21.447.  Google Scholar

[14]

M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986) 109–136. doi: 10.1016/0025-5564(86)90069-6.  Google Scholar

[15]

U. Krause, Positive Dynamical Systems in Siscrete Time. Theory, Models, and Applications, De Gruyter Studies in Mathematics, 62, De Gruyter, Berlin, 2015 doi: 10.1515/9783110365696.  Google Scholar

[16]

M. A. LewisN. G. Marculis and Z. Shen, Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics, J. Math. Biol., 77 (2018), 1649-1687.  doi: 10.1007/s00285-018-1206-1.  Google Scholar

[17]

B. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019 doi: 10.1007/978-3-030-29294-2.  Google Scholar

[19]

F. Lutscher and S. V. Petrovskii, The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn., 2 (2008), 55-63.  doi: 10.1080/17513750701769899.  Google Scholar

[20] J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, an Diego, 1999.   Google Scholar
[21]

T. E. X. MillerA. K. ShawB. D. Inouye and M. G. Neubert, Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.  doi: 10.1086/659628.  Google Scholar

[22]

J. Musgrave and F. Lutscher, Integrodifference equations in patchy landscapes II: Population level consequences, J. Math. Biol., 69 (2014), 617-658.  doi: 10.1007/s00285-013-0715-1.  Google Scholar

[23]

C. Poetzsche, Numerical dynamics of integrodifference equations: Global attractivity in a C0-setting, SIAM J. Numer. Anal., 57 (2019), 2121-2141.  doi: 10.1137/18M1214469.  Google Scholar

[24]

V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ (preprint) Google Scholar

[25]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence 2011 doi: 10.1090/gsm/118.  Google Scholar

[26]

H. R. Thieme, On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.  doi: 10.1007/BF01309313.  Google Scholar

[27]

H. R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144.  doi: 10.1007/s10884-015-9463-9.  Google Scholar

[28]

H. R. Thieme, From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol., 75 (2017), 783-804.  doi: 10.1007/s00285-017-1114-9.  Google Scholar

[29]

H. R. Thieme, Discrete-time population dynamics on the state space of measures, Math. Biosci. Engin., 17 (2020), 1168-1217.  doi: 10.3934/mbe.2020061.  Google Scholar

[30]

H. R. Thieme, Persistent discrete-time dynamics on measures, in Progress on Difference Equations and Discrete Dynamical Systems, (eds. Stephen Baigent, Saber Elaydi and Martin Bohner), 59-100, Springer Proceedings in Mathematics & Statistics 341, Springer Nature Switzerland AG, 2020 Google Scholar

[31]

H. R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, (preprint) Google Scholar

[32]

R. Wu and X.-Q. Zhao, Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations, 264 (2018), 6507-6534.  doi: 10.1016/j.jde.2018.01.039.  Google Scholar

[33]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003 doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition, Springer, Berlin Heidelberg 1999, 2006  Google Scholar

[2]

J. M. Cushing, On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., 5 (2011), 277-297.  doi: 10.1080/17513758.2010.491583.  Google Scholar

[3]

J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333.  doi: 10.1111/j.1939-7445.1994.tb00188.x.  Google Scholar

[4]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. Thieme, The 'cumulative' formulation of (physiologically) structured population models, in Evolution Equations, Control Theory, and Biomathematics (eds. Ph. Clément and G. Lumer), Marcel Dekker, 1994,145–154  Google Scholar

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction number $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365–382 doi: 10.1007/BF00178324.  Google Scholar

[6]

R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268, Correction to "Convergence of Baire measures", Stud. Math., 51 (1974), 275. doi: 10.4064/sm-27-3-251-268.  Google Scholar

[7]

R. M. Dudley, Real Analysis and Probability, sec. ed., Cambridge University Press, Cambridge 2002 doi: 10.1017/CBO9780511755347.  Google Scholar

[8]

E. A. EagerR. Rebarber and B. Tenhumberg, Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol., 76 (2014), 1809-1834.  doi: 10.1007/s11538-014-9978-y.  Google Scholar

[9]

S. P. Ellner, D. Z. Childs and M. Rees, Data-driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model, Springer, Cham, 2016. doi: 10.1007/978-3-319-28893-2.  Google Scholar

[10]

S. P. Ellner and M. Rees, Stochastic stable population growth in integral projection models: Theory and application, J. Math. Biol., 54 (2007), 227-256.  doi: 10.1007/s00285-006-0044-8.  Google Scholar

[11]

P. GwiazdaA. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 139-140.  doi: 10.1007/s11117-017-0503-z.  Google Scholar

[12]

S. C. Hille and D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371.  doi: 10.1007/s00020-008-1652-z.  Google Scholar

[13]

W. Jin and H. R. Thieme, An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete and Continuous Dynamical System - B, 21 (2016), 447-470.  doi: 10.3934/dcdsb.2016.21.447.  Google Scholar

[14]

M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986) 109–136. doi: 10.1016/0025-5564(86)90069-6.  Google Scholar

[15]

U. Krause, Positive Dynamical Systems in Siscrete Time. Theory, Models, and Applications, De Gruyter Studies in Mathematics, 62, De Gruyter, Berlin, 2015 doi: 10.1515/9783110365696.  Google Scholar

[16]

M. A. LewisN. G. Marculis and Z. Shen, Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics, J. Math. Biol., 77 (2018), 1649-1687.  doi: 10.1007/s00285-018-1206-1.  Google Scholar

[17]

B. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019 doi: 10.1007/978-3-030-29294-2.  Google Scholar

[19]

F. Lutscher and S. V. Petrovskii, The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn., 2 (2008), 55-63.  doi: 10.1080/17513750701769899.  Google Scholar

[20] J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, an Diego, 1999.   Google Scholar
[21]

T. E. X. MillerA. K. ShawB. D. Inouye and M. G. Neubert, Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.  doi: 10.1086/659628.  Google Scholar

[22]

J. Musgrave and F. Lutscher, Integrodifference equations in patchy landscapes II: Population level consequences, J. Math. Biol., 69 (2014), 617-658.  doi: 10.1007/s00285-013-0715-1.  Google Scholar

[23]

C. Poetzsche, Numerical dynamics of integrodifference equations: Global attractivity in a C0-setting, SIAM J. Numer. Anal., 57 (2019), 2121-2141.  doi: 10.1137/18M1214469.  Google Scholar

[24]

V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ (preprint) Google Scholar

[25]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence 2011 doi: 10.1090/gsm/118.  Google Scholar

[26]

H. R. Thieme, On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.  doi: 10.1007/BF01309313.  Google Scholar

[27]

H. R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144.  doi: 10.1007/s10884-015-9463-9.  Google Scholar

[28]

H. R. Thieme, From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol., 75 (2017), 783-804.  doi: 10.1007/s00285-017-1114-9.  Google Scholar

[29]

H. R. Thieme, Discrete-time population dynamics on the state space of measures, Math. Biosci. Engin., 17 (2020), 1168-1217.  doi: 10.3934/mbe.2020061.  Google Scholar

[30]

H. R. Thieme, Persistent discrete-time dynamics on measures, in Progress on Difference Equations and Discrete Dynamical Systems, (eds. Stephen Baigent, Saber Elaydi and Martin Bohner), 59-100, Springer Proceedings in Mathematics & Statistics 341, Springer Nature Switzerland AG, 2020 Google Scholar

[31]

H. R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, (preprint) Google Scholar

[32]

R. Wu and X.-Q. Zhao, Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations, 264 (2018), 6507-6534.  doi: 10.1016/j.jde.2018.01.039.  Google Scholar

[33]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003 doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[4]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[5]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[6]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[7]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[9]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[10]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[11]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[12]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[13]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[14]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[15]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[18]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[19]

Moon Duchin, Tom Needham, Thomas Weighill. The (homological) persistence of gerrymandering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021007

[20]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

2019 Impact Factor: 1.27

Article outline

[Back to Top]