• Previous Article
    Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate
  • DCDS-B Home
  • This Issue
  • Next Article
    A short-term food intake model involving glucose, insulin and ghrelin
doi: 10.3934/dcdsb.2021083
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Positive solutions of singular multiparameter p-Laplacian elliptic systems

School of Applied Science, Beijing Information Science & Technology University, Beijing, 100192, China

* Corresponding author: Meiqiang Feng

Received  September 2020 Revised  November 2020 Early access March 2021

Fund Project: The first author is supported by the Beijing Natural Science Foundation of China (1212003)

In this paper, by using the eigenvalue theory, the sub-supersolution method and the fixed point theory, we prove the existence, multiplicity, uniqueness, asymptotic behavior and approximation of positive solutions for singular multiparameter p-Laplacian elliptic systems on nonlinearities with separate variables or without separate variables. Various nonexistence results of positive solutions are also studied.

Citation: Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021083
References:
[1]

A. Ahammou, Positive radial solutions of nonlinear elliptic systems, New York J. Math., 7 (2001), 267–280. http://nyjm.albany.edu/j/2001/7_267.html.  Google Scholar

[2]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems, Discrete Contin. Dynam. Systems, 8 (2002), 289-302.  doi: 10.3934/dcds.2002.8.289.  Google Scholar

[3]

M. Benrhouma, Existence of solutions for a semilinear elliptic system, ESAIM Cont. Opt. Cal. Var., 19 (2013), 574-586.  doi: 10.1051/cocv/2012022.  Google Scholar

[4]

M. Benrhouma, Existence and uniqueness of solutions for a singular semilinear elliptic system, Nonlinear Anal., 107 (2014), 134-146.  doi: 10.1016/j.na.2014.05.002.  Google Scholar

[5]

I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.  doi: 10.1017/S0308210500027293.  Google Scholar

[6]

D. BonheureE. M. dos Santos and H. Tavares, Hamiltonian elliptic systems: A guide to variational frameworks, Port. Math., 71 (2014), 301-395.  doi: 10.4171/PM/1954.  Google Scholar

[7]

Y. Bozhkov and E. Mitidieri, Existence of multiple solutions for quasilinear systems via fibering method, J. Differential Equations, 190 (2003), 239-267.  doi: 10.1016/S0022-0396(02)00112-2.  Google Scholar

[8]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701.  Google Scholar

[9]

J. Busca and R. Man$\acute{a}$sevich, A Liouville-type theorem for Lane-Emden systems, Indiana Univ. Math. J., 51 (2002), 37-51.  doi: 10.1512/iumj.2002.51.2160.  Google Scholar

[10]

C. Cosner, Positive solutions for superlinear elliptic systems, without variational structure, Nonlinear Anal., 8 (1984), 1427-1436.  doi: 10.1016/0362-546X(84)90053-1.  Google Scholar

[11]

D. CaoS. Peng and S. Yan, Infinitely many solutions for $p$-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[12]

M. Chhetri, R. Shivaji, B. Son and L. Sankar, An existence result for superlinear semipositone $p$-Laplacian systems on the exterior of a ball, Differ. Integral Equ., 31 (2018), 643–656, https://mathscinet.ams.org/leavingmsn?url=https://projecteuclid.org/euclid.die/1526004034.  Google Scholar

[13]

M. Chhetri and P. Girg, Existence of positive solutions for a class of superlinear semipositone systems, J. Math. Anal. Appl., 408 (2013) 781–788. doi: 10.1016/j.jmaa.2013.06.041.  Google Scholar

[14]

F.-C. Şt. Cȋrstea and V. D. R$\breve{a}$dulescu, Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl., 81 (2002), 827-846.  doi: 10.1016/S0021-7824(02)01265-5.  Google Scholar

[15]

Ph. ClémentD. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 923-940.  doi: 10.1080/03605309208820869.  Google Scholar

[16]

R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal., 39 (2000), 559-568.  doi: 10.1016/S0362-546X(98)00221-1.  Google Scholar

[17]

L. D'Ambrosio and E. Mitidieri, Quasilinear elliptic systems in divergence form associated to general nonlinearities, Adv. Nonlinear Anal., 7 (2018), 425-447.  doi: 10.1515/anona-2018-0171.  Google Scholar

[18]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[19]

J. M. do ÓS. LorcaJ. S$\acute{a}$nchez and P. Ubilla, Positive solutions for a class of multiparameter ordinary elliptic systems, J. Math. Anal. Appl., 332 (2007), 1249-1266.  doi: 10.1016/j.jmaa.2006.10.063.  Google Scholar

[20]

D. R. Dunninger and H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal., 42 (2000), 803-811.  doi: 10.1016/S0362-546X(99)00125-X.  Google Scholar

[21]

P. FelmerR. F. Manásevich and F. de Thélin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 2013-2029.  doi: 10.1080/03605309208820912.  Google Scholar

[22]

M. Feng, Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior, Adv. Nonlinear Anal., 10 (2021), 371-399.  doi: 10.1515/anona-2020-0139.  Google Scholar

[23]

M. FengB. Du and W. Ge, Impulsive boundary value problems with integral boundary conditions and one-dimensional $p$-Laplacian, Nonlinear Anal., 70 (2009), 3119-3126.  doi: 10.1016/j.na.2008.04.015.  Google Scholar

[24]

G. Galise, On positive solutions of fully nonlinear degenerate Lane-Emden type equations, J. Differential Equations, 266 (2019), 1675-169.  doi: 10.1016/j.jde.2018.08.014.  Google Scholar

[25]

M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318.  doi: 10.1016/j.jfa.2010.02.003.  Google Scholar

[26]

M. Ghergu and V. R$\breve{a}$dulescu, Explosive solutions of semilinear elliptic systems with gradient term, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 437-445.   Google Scholar

[27]

D. Guo, Eigenvalue and eigenvectors of nonlinear operators, Chin. Ann. Math., 2 (Eng. Issue) (1981), 65-80. Google Scholar

[28]

D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.  Google Scholar

[29]

D. D. Hai, Existence and uniqueness of solutions for quasilinear elliptic systems, Proc. Amer. Math. Soc., 133 (2005), 223-228.  doi: 10.1090/S0002-9939-04-07602-6.  Google Scholar

[30]

D. D. Hai, On a class of semilinear elliptic systems, J. Math. Anal. Appl., 285 (2003), 477-486.  doi: 10.1016/S0022-247X(03)00413-X.  Google Scholar

[31]

D. D. Hai, Uniqueness of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal., 52 (2003), 595-603.  doi: 10.1016/S0362-546X(02)00125-6.  Google Scholar

[32]

D. D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl., 456 (2017), 872-881.  doi: 10.1016/j.jmaa.2017.06.088.  Google Scholar

[33]

D. D. Hai and R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differential Equations, 266 (2019), 2232-2243.  doi: 10.1016/j.jde.2018.08.027.  Google Scholar

[34]

S. Hu and H. Wang, Convex solutions of boundary value problems arising from Monge-Ampère equations, Discrete Contin. Dynam. Systems, 16 (2006), 705-720.  doi: 10.3934/dcds.2006.16.705.  Google Scholar

[35]

N. Kawano and T. Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Zeitschrift, 186 (1984), 287-297.  doi: 10.1007/BF01174883.  Google Scholar

[36]

M. A. Krasnosel'skii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964. Google Scholar

[37]

A. V. Lair and A. W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differential Equations, 164 (2000), 380-394.  doi: 10.1006/jdeq.2000.3768.  Google Scholar

[38]

K. Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of $p$-Laplace equations, J. Math. Anal. Appl., 394 (2012), 581-591.  doi: 10.1016/j.jmaa.2012.04.061.  Google Scholar

[39]

Y.-H. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus, J. Differential Equations, 174 (2001), 420-441.  doi: 10.1006/jdeq.2000.3915.  Google Scholar

[40]

M. Maniwa, Uniqueness and existence of positive solutions for some semilinear elliptic systems, Nonlinear Anal., 59 (2004), 993-999.  doi: 10.1016/j.na.2004.08.006.  Google Scholar

[41]

N. Mavinga and R. Pardo, A priori bounds and existence of positive solutions for semilinear elliptic systems, J. Math. Anal. Appl., 449 (2017), 1172-1188.  doi: 10.1016/j.jmaa.2016.12.058.  Google Scholar

[42]

Q. A. Morris, Analysis of Classes of Superlinear Semipositone Problems with Nonlinear Boundary Conditions, Dissertation of University of North Carolina at Greensboro, 2017.  Google Scholar

[43]

R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl., 352 (2009), 48-56.  doi: 10.1016/j.jmaa.2008.01.097.  Google Scholar

[44]

P. Quittner and Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Ration. Mech. Anal., 174 (2004), 49-81.  doi: 10.1007/s00205-004-0323-8.  Google Scholar

[45]

J. Serrin and H. Zou, Nonexistence of positive solutions of Lane-Emden systems, Differ. Integral Equ., 9 (1996), 635-653.   Google Scholar

[46]

B. Son and P. Wang, Analysis of positive radial solutions for singular superlinear $p$-Laplacian systems on the exterior of a ball, Nonlinear Anal., 192 (2020), 111657, 15 pp. doi: 10.1016/j.na.2019.111657.  Google Scholar

[47]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[48]

M. XiangB. Zhang and V. D. R$\breve{a}$dulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 3186-3205.  doi: 10.1088/0951-7715/29/10/3186.  Google Scholar

[49]

Y. Zhang and M. Feng, A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior, Electron. Res. Arch., 28 (2020), 1419-1438.  doi: 10.3934/era.2020075.  Google Scholar

[50]

Z. Zhang and Z. Qi, On a power-type coupled system of Monge-Ampère equations, Topol. Method. Nonl. Anal., 46 (2015), 717-729.   Google Scholar

[51]

H. Zou, A priori estimates for a semilinear elliptic system without variational structure and their applications, Math. Ann., 323 (2002), 713-735.  doi: 10.1007/s002080200324.  Google Scholar

show all references

References:
[1]

A. Ahammou, Positive radial solutions of nonlinear elliptic systems, New York J. Math., 7 (2001), 267–280. http://nyjm.albany.edu/j/2001/7_267.html.  Google Scholar

[2]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems, Discrete Contin. Dynam. Systems, 8 (2002), 289-302.  doi: 10.3934/dcds.2002.8.289.  Google Scholar

[3]

M. Benrhouma, Existence of solutions for a semilinear elliptic system, ESAIM Cont. Opt. Cal. Var., 19 (2013), 574-586.  doi: 10.1051/cocv/2012022.  Google Scholar

[4]

M. Benrhouma, Existence and uniqueness of solutions for a singular semilinear elliptic system, Nonlinear Anal., 107 (2014), 134-146.  doi: 10.1016/j.na.2014.05.002.  Google Scholar

[5]

I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.  doi: 10.1017/S0308210500027293.  Google Scholar

[6]

D. BonheureE. M. dos Santos and H. Tavares, Hamiltonian elliptic systems: A guide to variational frameworks, Port. Math., 71 (2014), 301-395.  doi: 10.4171/PM/1954.  Google Scholar

[7]

Y. Bozhkov and E. Mitidieri, Existence of multiple solutions for quasilinear systems via fibering method, J. Differential Equations, 190 (2003), 239-267.  doi: 10.1016/S0022-0396(02)00112-2.  Google Scholar

[8]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701.  Google Scholar

[9]

J. Busca and R. Man$\acute{a}$sevich, A Liouville-type theorem for Lane-Emden systems, Indiana Univ. Math. J., 51 (2002), 37-51.  doi: 10.1512/iumj.2002.51.2160.  Google Scholar

[10]

C. Cosner, Positive solutions for superlinear elliptic systems, without variational structure, Nonlinear Anal., 8 (1984), 1427-1436.  doi: 10.1016/0362-546X(84)90053-1.  Google Scholar

[11]

D. CaoS. Peng and S. Yan, Infinitely many solutions for $p$-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[12]

M. Chhetri, R. Shivaji, B. Son and L. Sankar, An existence result for superlinear semipositone $p$-Laplacian systems on the exterior of a ball, Differ. Integral Equ., 31 (2018), 643–656, https://mathscinet.ams.org/leavingmsn?url=https://projecteuclid.org/euclid.die/1526004034.  Google Scholar

[13]

M. Chhetri and P. Girg, Existence of positive solutions for a class of superlinear semipositone systems, J. Math. Anal. Appl., 408 (2013) 781–788. doi: 10.1016/j.jmaa.2013.06.041.  Google Scholar

[14]

F.-C. Şt. Cȋrstea and V. D. R$\breve{a}$dulescu, Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl., 81 (2002), 827-846.  doi: 10.1016/S0021-7824(02)01265-5.  Google Scholar

[15]

Ph. ClémentD. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 923-940.  doi: 10.1080/03605309208820869.  Google Scholar

[16]

R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal., 39 (2000), 559-568.  doi: 10.1016/S0362-546X(98)00221-1.  Google Scholar

[17]

L. D'Ambrosio and E. Mitidieri, Quasilinear elliptic systems in divergence form associated to general nonlinearities, Adv. Nonlinear Anal., 7 (2018), 425-447.  doi: 10.1515/anona-2018-0171.  Google Scholar

[18]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[19]

J. M. do ÓS. LorcaJ. S$\acute{a}$nchez and P. Ubilla, Positive solutions for a class of multiparameter ordinary elliptic systems, J. Math. Anal. Appl., 332 (2007), 1249-1266.  doi: 10.1016/j.jmaa.2006.10.063.  Google Scholar

[20]

D. R. Dunninger and H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal., 42 (2000), 803-811.  doi: 10.1016/S0362-546X(99)00125-X.  Google Scholar

[21]

P. FelmerR. F. Manásevich and F. de Thélin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 2013-2029.  doi: 10.1080/03605309208820912.  Google Scholar

[22]

M. Feng, Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior, Adv. Nonlinear Anal., 10 (2021), 371-399.  doi: 10.1515/anona-2020-0139.  Google Scholar

[23]

M. FengB. Du and W. Ge, Impulsive boundary value problems with integral boundary conditions and one-dimensional $p$-Laplacian, Nonlinear Anal., 70 (2009), 3119-3126.  doi: 10.1016/j.na.2008.04.015.  Google Scholar

[24]

G. Galise, On positive solutions of fully nonlinear degenerate Lane-Emden type equations, J. Differential Equations, 266 (2019), 1675-169.  doi: 10.1016/j.jde.2018.08.014.  Google Scholar

[25]

M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318.  doi: 10.1016/j.jfa.2010.02.003.  Google Scholar

[26]

M. Ghergu and V. R$\breve{a}$dulescu, Explosive solutions of semilinear elliptic systems with gradient term, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 437-445.   Google Scholar

[27]

D. Guo, Eigenvalue and eigenvectors of nonlinear operators, Chin. Ann. Math., 2 (Eng. Issue) (1981), 65-80. Google Scholar

[28]

D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.  Google Scholar

[29]

D. D. Hai, Existence and uniqueness of solutions for quasilinear elliptic systems, Proc. Amer. Math. Soc., 133 (2005), 223-228.  doi: 10.1090/S0002-9939-04-07602-6.  Google Scholar

[30]

D. D. Hai, On a class of semilinear elliptic systems, J. Math. Anal. Appl., 285 (2003), 477-486.  doi: 10.1016/S0022-247X(03)00413-X.  Google Scholar

[31]

D. D. Hai, Uniqueness of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal., 52 (2003), 595-603.  doi: 10.1016/S0362-546X(02)00125-6.  Google Scholar

[32]

D. D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl., 456 (2017), 872-881.  doi: 10.1016/j.jmaa.2017.06.088.  Google Scholar

[33]

D. D. Hai and R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differential Equations, 266 (2019), 2232-2243.  doi: 10.1016/j.jde.2018.08.027.  Google Scholar

[34]

S. Hu and H. Wang, Convex solutions of boundary value problems arising from Monge-Ampère equations, Discrete Contin. Dynam. Systems, 16 (2006), 705-720.  doi: 10.3934/dcds.2006.16.705.  Google Scholar

[35]

N. Kawano and T. Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Zeitschrift, 186 (1984), 287-297.  doi: 10.1007/BF01174883.  Google Scholar

[36]

M. A. Krasnosel'skii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964. Google Scholar

[37]

A. V. Lair and A. W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differential Equations, 164 (2000), 380-394.  doi: 10.1006/jdeq.2000.3768.  Google Scholar

[38]

K. Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of $p$-Laplace equations, J. Math. Anal. Appl., 394 (2012), 581-591.  doi: 10.1016/j.jmaa.2012.04.061.  Google Scholar

[39]

Y.-H. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus, J. Differential Equations, 174 (2001), 420-441.  doi: 10.1006/jdeq.2000.3915.  Google Scholar

[40]

M. Maniwa, Uniqueness and existence of positive solutions for some semilinear elliptic systems, Nonlinear Anal., 59 (2004), 993-999.  doi: 10.1016/j.na.2004.08.006.  Google Scholar

[41]

N. Mavinga and R. Pardo, A priori bounds and existence of positive solutions for semilinear elliptic systems, J. Math. Anal. Appl., 449 (2017), 1172-1188.  doi: 10.1016/j.jmaa.2016.12.058.  Google Scholar

[42]

Q. A. Morris, Analysis of Classes of Superlinear Semipositone Problems with Nonlinear Boundary Conditions, Dissertation of University of North Carolina at Greensboro, 2017.  Google Scholar

[43]

R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl., 352 (2009), 48-56.  doi: 10.1016/j.jmaa.2008.01.097.  Google Scholar

[44]

P. Quittner and Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Ration. Mech. Anal., 174 (2004), 49-81.  doi: 10.1007/s00205-004-0323-8.  Google Scholar

[45]

J. Serrin and H. Zou, Nonexistence of positive solutions of Lane-Emden systems, Differ. Integral Equ., 9 (1996), 635-653.   Google Scholar

[46]

B. Son and P. Wang, Analysis of positive radial solutions for singular superlinear $p$-Laplacian systems on the exterior of a ball, Nonlinear Anal., 192 (2020), 111657, 15 pp. doi: 10.1016/j.na.2019.111657.  Google Scholar

[47]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[48]

M. XiangB. Zhang and V. D. R$\breve{a}$dulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 3186-3205.  doi: 10.1088/0951-7715/29/10/3186.  Google Scholar

[49]

Y. Zhang and M. Feng, A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior, Electron. Res. Arch., 28 (2020), 1419-1438.  doi: 10.3934/era.2020075.  Google Scholar

[50]

Z. Zhang and Z. Qi, On a power-type coupled system of Monge-Ampère equations, Topol. Method. Nonl. Anal., 46 (2015), 717-729.   Google Scholar

[51]

H. Zou, A priori estimates for a semilinear elliptic system without variational structure and their applications, Math. Ann., 323 (2002), 713-735.  doi: 10.1007/s002080200324.  Google Scholar

[1]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[2]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[3]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[4]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[5]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[6]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[7]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400

[10]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[11]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[12]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[13]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[14]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[15]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[16]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[17]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[18]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[19]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[20]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (153)
  • HTML views (264)
  • Cited by (0)

Other articles
by authors

[Back to Top]