[1]
|
Q. An and W. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183.
|
[2]
|
Yu. I. Balkarei, A. V. Grigor'yants, Yu. A. Rzhanov and M. I. Elinson, Regenerative oscillations, spatial-temporal single pulses and static inhomogeneous structures in optically bistable semiconductors, Opt. Commun., 66 (1988), 161-166.
doi: 10.1016/0030-4018(88)90054-5.
|
[3]
|
X. Cao and W. Jiang, On Turing-Turing bifurcation of partial functional differential equations and its induced superposition patterns, Submitted.
|
[4]
|
V. Dufiet and J. Boissonade, Conventional and unconventional Turing patterns, J. Chem. Phys., 96 (1992), 664-673.
doi: 10.1063/1.462450.
|
[5]
|
L. Edelstein-Keshet, Mathematical Models in Biology, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005.
doi: 10.1137/1.9780898719147.
|
[6]
|
E. A. Gaffney and N. A. L. x Monk, Gene expression time delays and Turing pattern formation systems, Bull. Math. Biol., 68 (2006), 99-130.
doi: 10.1007/s11538-006-9066-z.
|
[7]
|
G. H. Gunaratne, Complex spatial patterns on planar continua, Phys. Rev. Lett., 71 (1993), 1367-1370.
doi: 10.1103/PhysRevLett.71.1367.
|
[8]
|
Z.-G. Guo, L.-P. Song, G.-Q. Sun, C. Li and Z. Jin, Pattern dynamics of an SIS epidemic model with nonlocal delay, Internat. J. Bifur. Chaos, 29 (2019), 1950027, 12 pp.
doi: 10.1142/S0218127419500275.
|
[9]
|
K. P. Hadeler and S. Ruan, Interaction of diffusion and delay, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 95-105.
doi: 10.3934/dcdsb.2007.8.95.
|
[10]
|
W. Jiang, H. Wang and X. Cao, Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay, J. Dynam. Differential Equations, 31 (2019), 2223-2247.
doi: 10.1007/s10884-018-9702-y.
|
[11]
|
S. L. Judd and M. Silber, Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse, Phys. D, 136 (2000), 45-65.
doi: 10.1016/S0167-2789(99)00154-2.
|
[12]
|
I. Lengyel and I. R. Epsten, Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652.
doi: 10.1126/science.251.4994.650.
|
[13]
|
S. Li, J. Wu and Y. Doug, Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 259 (2015), 1990-2029.
doi: 10.1016/j.jde.2015.03.017.
|
[14]
|
P. Liu, J. Shi, Y. Wang and X. Feng, Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51 (2013), 2001-2019.
doi: 10.1007/s10910-013-0196-x.
|
[15]
|
P. K. Maini, K. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems, J. Chem. Soc. Faraday Trans., 93 (1997), 3601-3610.
doi: 10.1039/a702602a.
|
[16]
|
J. D. Murray, Parameter space for Turing instability in reaction diffusion mechanisms: A comparison of models, J. Theoret. Biol., 98 (1982), 143-163.
doi: 10.1016/0022-5193(82)90063-7.
|
[17]
|
J. D. Murray, Mathematical Biology, Biomathematics, 19. Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-662-08539-4.
|
[18]
|
J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003
|
[19]
|
W.-M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.
doi: 10.1090/S0002-9947-05-04010-9.
|
[20]
|
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.
doi: 10.1137/0513037.
|
[21]
|
T. Nozakura and S. Ikeuchi, Formation of dissipative structures in galaxies, Astrophys. J., 279 (1984), 40-52.
doi: 10.1086/161863.
|
[22]
|
M.R. Richard and S. Mischler, Turing instabilities at Hopf bifurcation, J. Nonlinear Sci., 19 (2009), 467-496.
doi: 10.1007/s00332-009-9041-6.
|
[23]
|
R. A. Satnoianu, M. Menzinger and P. K. Maini, Turing instabilities in general system, J. Math. Biol., 41 (2000), 493-512.
doi: 10.1007/s002850000056.
|
[24]
|
J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theoret. Biol., 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0.
|
[25]
|
L. A. Segel and J. L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37 (1972), 545-559.
doi: 10.1016/0022-5193(72)90090-2.
|
[26]
|
L. Seirin Lee, E.A. Gaffney and R. E. Baker, The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays, Bull. Math. Biol., 73 (2011), 2527-2551.
doi: 10.1007/s11538-011-9634-8.
|
[27]
|
G.-Q. Sun, J. Zhang, L.-P. Song, Z. Jin and B.-L. Li, Pattern formation of a spatial predator-prey system, Appl. Math. Comput., 218 (2012), 11151-11162.
doi: 10.1016/j.amc.2012.04.071.
|
[28]
|
A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012.
|
[29]
|
W. Wang, X. Gao, Y. Cai, H. Shi and S. Fu, Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin Inst., 355 (2018), 7226-7245.
doi: 10.1016/j.jfranklin.2018.07.014.
|
[30]
|
M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.
doi: 10.1111/1467-9590.00223.
|
[31]
|
M. Wei, J. Wu and G. Guo, Steady state bifurcations for a glycolysis model in biochemical reaction, Nonlinear Anal. Real World Appl., 22 (2015), 155-175.
doi: 10.1016/j.nonrwa.2014.08.003.
|
[32]
|
P. W. Williams, Geomorphology and hydrology of karst terrains, Nature, 336 (1988), 322-322.
doi: 10.1038/336322b0.
|
[33]
|
L. Wolpert and T. Jessell, Principles of Development, Oxford University Press, 1998.
|
[34]
|
T. E. Woolley, R. E. Baker and P. K. Maini, Turing's theory of morphogenesis: Where we started, where we are and where we want to go, in The Incomputable, in Theory Appl. Comput., Springer, Cham, 2017,219–235.
|
[35]
|
C. Xu and J. Wei, Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model, Nonlinear Anal. Real World Appl., 13 (2012), 1961-1977.
doi: 10.1016/j.nonrwa.2012.01.001.
|
[36]
|
F. Yi, E. A. Gaffney and S. Seirin-Lee, The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 647-668.
doi: 10.3934/dcdsb.2017031.
|
[37]
|
F. Yi, J. Wei and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 9 (2008), 1038-1051.
doi: 10.1016/j.nonrwa.2007.02.005.
|
[38]
|
J.-F. Zhang, W.-T. Li and Y.-T. Wang, Turing patterns of a strongly coupled predator-prey system with diffusion effects, Nonlinear Anal., 74 (2011), 847-858.
doi: 10.1016/j.na.2010.09.035.
|