• Previous Article
    Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications
  • DCDS-B Home
  • This Issue
  • Next Article
    Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy
doi: 10.3934/dcdsb.2021087

Critical traveling wave solutions for a vaccination model with general incidence

1. 

School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China

2. 

Department of Mathematics, Zhejiang International Studies University, Hangzhou 310023, China

3. 

Department of Mathematics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan

* Corresponding author: Yu Yang

Received  July 2020 Revised  January 2021 Published  March 2021

Fund Project: The third author was partially supported by the MOST (Grant No. 107-2115-M-008-009- MY3) and NCTS of Taiwan

This paper is concerned with the existence of traveling wave solutions for a vaccination model with general incidence. The existence or non-existence of traveling wave solutions for the model with specific incidence were proved recently when the wave speed is greater or smaller than a critical speed respectively. However, the existence of critical traveling wave solutions (with critical wave speed) was still open. In this paper, applying the Schauder's fixed point theorem via a pair of upper- and lower-solutions of the system, we show that the general vaccination model admits positive critical traveling wave solutions which connect the disease-free and endemic equilibria. Our result not only gives an affirmative answer to the open problem given in the previous specific work, but also to the model with general incidence. Furthermore, we extend our result to some nonlocal version of the considered model.

Citation: Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021087
References:
[1]

Y.-S. Chen and J.-S. Guo, Traveling wave solutions for a three-species predator-prey model with two aborigine preys, Japan J. Indust. Appl. Math., (2020). doi: 10.1007/s13160-020-00445-9.  Google Scholar

[2]

A. Ducrot, J.-S. Guo, G. Lin and S. X. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. doi: 10.1007/s00033-019-1188-x.  Google Scholar

[3]

S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.  doi: 10.1016/j.jmaa.2015.09.069.  Google Scholar

[4]

J.-S. Guo, K. I. Nakamura, T. Ogiwara and C.-C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. RWA, 54 (2020), 103111, 13pp. doi: 10.1016/j.nonrwa.2020.103111.  Google Scholar

[5]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251 (2007), 399-437.  doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[6]

Y. LiW.-T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.  doi: 10.3934/cpaa.2015.14.1001.  Google Scholar

[7]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. X. Tian, Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay, Appl. Math. Comput., 363 (2019), 124621. doi: 10.1016/j.amc.2019.124621.  Google Scholar

[8]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 367 (2020), 112451, 15pp. doi: 10.1016/j.cam.2019.112451.  Google Scholar

[9]

J. D. WeiJ. B. ZhouW. X. ChenZ. L. Zhen and L. X. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure. Appl. Anal., 19 (2020), 2853-2886.  doi: 10.3934/cpaa.2020125.  Google Scholar

[10]

C. F. WuY. YangQ. Y. ZhaoY. L. Tian and Z. T. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313 (2017), 122-143.  doi: 10.1016/j.amc.2017.05.068.  Google Scholar

[11]

Z. T. XuY. Q. Xu and Y. H. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 75 (2018), 561-581.  doi: 10.1016/j.camwa.2017.09.042.  Google Scholar

[12]

L. Zhao and Z.-C. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.  doi: 10.1093/imamat/hxw033.  Google Scholar

[13]

J. B. ZhouL. Y. SongJ. D. Wei and H. M. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.  doi: 10.1016/j.jmaa.2019.03.066.  Google Scholar

[14]

J. B. ZhouL. Y. Song and J. D. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equ., 268 (2020), 4491-4524.  doi: 10.1016/j.jde.2019.10.034.  Google Scholar

[15]

J. L. ZhouY. Yang and C.-H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1469-1495.  doi: 10.3934/dcdsb.2019236.  Google Scholar

show all references

References:
[1]

Y.-S. Chen and J.-S. Guo, Traveling wave solutions for a three-species predator-prey model with two aborigine preys, Japan J. Indust. Appl. Math., (2020). doi: 10.1007/s13160-020-00445-9.  Google Scholar

[2]

A. Ducrot, J.-S. Guo, G. Lin and S. X. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. doi: 10.1007/s00033-019-1188-x.  Google Scholar

[3]

S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.  doi: 10.1016/j.jmaa.2015.09.069.  Google Scholar

[4]

J.-S. Guo, K. I. Nakamura, T. Ogiwara and C.-C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. RWA, 54 (2020), 103111, 13pp. doi: 10.1016/j.nonrwa.2020.103111.  Google Scholar

[5]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251 (2007), 399-437.  doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[6]

Y. LiW.-T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.  doi: 10.3934/cpaa.2015.14.1001.  Google Scholar

[7]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. X. Tian, Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay, Appl. Math. Comput., 363 (2019), 124621. doi: 10.1016/j.amc.2019.124621.  Google Scholar

[8]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 367 (2020), 112451, 15pp. doi: 10.1016/j.cam.2019.112451.  Google Scholar

[9]

J. D. WeiJ. B. ZhouW. X. ChenZ. L. Zhen and L. X. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure. Appl. Anal., 19 (2020), 2853-2886.  doi: 10.3934/cpaa.2020125.  Google Scholar

[10]

C. F. WuY. YangQ. Y. ZhaoY. L. Tian and Z. T. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313 (2017), 122-143.  doi: 10.1016/j.amc.2017.05.068.  Google Scholar

[11]

Z. T. XuY. Q. Xu and Y. H. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 75 (2018), 561-581.  doi: 10.1016/j.camwa.2017.09.042.  Google Scholar

[12]

L. Zhao and Z.-C. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.  doi: 10.1093/imamat/hxw033.  Google Scholar

[13]

J. B. ZhouL. Y. SongJ. D. Wei and H. M. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.  doi: 10.1016/j.jmaa.2019.03.066.  Google Scholar

[14]

J. B. ZhouL. Y. Song and J. D. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equ., 268 (2020), 4491-4524.  doi: 10.1016/j.jde.2019.10.034.  Google Scholar

[15]

J. L. ZhouY. Yang and C.-H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1469-1495.  doi: 10.3934/dcdsb.2019236.  Google Scholar

[1]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[4]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[5]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[6]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[7]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[8]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[9]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[10]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[11]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[12]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[13]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[14]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[15]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[16]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[17]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[18]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[19]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[20]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (32)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]