March  2022, 27(3): 1209-1225. doi: 10.3934/dcdsb.2021087

Critical traveling wave solutions for a vaccination model with general incidence

1. 

School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China

2. 

Department of Mathematics, Zhejiang International Studies University, Hangzhou 310023, China

3. 

Department of Mathematics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan

* Corresponding author: Yu Yang

Received  July 2020 Revised  January 2021 Published  March 2022 Early access  March 2021

Fund Project: The third author was partially supported by the MOST (Grant No. 107-2115-M-008-009- MY3) and NCTS of Taiwan

This paper is concerned with the existence of traveling wave solutions for a vaccination model with general incidence. The existence or non-existence of traveling wave solutions for the model with specific incidence were proved recently when the wave speed is greater or smaller than a critical speed respectively. However, the existence of critical traveling wave solutions (with critical wave speed) was still open. In this paper, applying the Schauder's fixed point theorem via a pair of upper- and lower-solutions of the system, we show that the general vaccination model admits positive critical traveling wave solutions which connect the disease-free and endemic equilibria. Our result not only gives an affirmative answer to the open problem given in the previous specific work, but also to the model with general incidence. Furthermore, we extend our result to some nonlocal version of the considered model.

Citation: Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1209-1225. doi: 10.3934/dcdsb.2021087
References:
[1]

Y.-S. Chen and J.-S. Guo, Traveling wave solutions for a three-species predator-prey model with two aborigine preys, Japan J. Indust. Appl. Math., (2020). doi: 10.1007/s13160-020-00445-9.

[2]

A. Ducrot, J.-S. Guo, G. Lin and S. X. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. doi: 10.1007/s00033-019-1188-x.

[3]

S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.  doi: 10.1016/j.jmaa.2015.09.069.

[4]

J.-S. Guo, K. I. Nakamura, T. Ogiwara and C.-C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. RWA, 54 (2020), 103111, 13pp. doi: 10.1016/j.nonrwa.2020.103111.

[5]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251 (2007), 399-437.  doi: 10.1016/j.jfa.2007.07.013.

[6]

Y. LiW.-T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.  doi: 10.3934/cpaa.2015.14.1001.

[7]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. X. Tian, Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay, Appl. Math. Comput., 363 (2019), 124621. doi: 10.1016/j.amc.2019.124621.

[8]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 367 (2020), 112451, 15pp. doi: 10.1016/j.cam.2019.112451.

[9]

J. D. WeiJ. B. ZhouW. X. ChenZ. L. Zhen and L. X. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure. Appl. Anal., 19 (2020), 2853-2886.  doi: 10.3934/cpaa.2020125.

[10]

C. F. WuY. YangQ. Y. ZhaoY. L. Tian and Z. T. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313 (2017), 122-143.  doi: 10.1016/j.amc.2017.05.068.

[11]

Z. T. XuY. Q. Xu and Y. H. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 75 (2018), 561-581.  doi: 10.1016/j.camwa.2017.09.042.

[12]

L. Zhao and Z.-C. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.  doi: 10.1093/imamat/hxw033.

[13]

J. B. ZhouL. Y. SongJ. D. Wei and H. M. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.  doi: 10.1016/j.jmaa.2019.03.066.

[14]

J. B. ZhouL. Y. Song and J. D. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equ., 268 (2020), 4491-4524.  doi: 10.1016/j.jde.2019.10.034.

[15]

J. L. ZhouY. Yang and C.-H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1469-1495.  doi: 10.3934/dcdsb.2019236.

show all references

References:
[1]

Y.-S. Chen and J.-S. Guo, Traveling wave solutions for a three-species predator-prey model with two aborigine preys, Japan J. Indust. Appl. Math., (2020). doi: 10.1007/s13160-020-00445-9.

[2]

A. Ducrot, J.-S. Guo, G. Lin and S. X. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. doi: 10.1007/s00033-019-1188-x.

[3]

S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.  doi: 10.1016/j.jmaa.2015.09.069.

[4]

J.-S. Guo, K. I. Nakamura, T. Ogiwara and C.-C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. RWA, 54 (2020), 103111, 13pp. doi: 10.1016/j.nonrwa.2020.103111.

[5]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251 (2007), 399-437.  doi: 10.1016/j.jfa.2007.07.013.

[6]

Y. LiW.-T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.  doi: 10.3934/cpaa.2015.14.1001.

[7]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. X. Tian, Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay, Appl. Math. Comput., 363 (2019), 124621. doi: 10.1016/j.amc.2019.124621.

[8]

J. D. Wei, J. B. Zhou, Z. L. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 367 (2020), 112451, 15pp. doi: 10.1016/j.cam.2019.112451.

[9]

J. D. WeiJ. B. ZhouW. X. ChenZ. L. Zhen and L. X. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure. Appl. Anal., 19 (2020), 2853-2886.  doi: 10.3934/cpaa.2020125.

[10]

C. F. WuY. YangQ. Y. ZhaoY. L. Tian and Z. T. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313 (2017), 122-143.  doi: 10.1016/j.amc.2017.05.068.

[11]

Z. T. XuY. Q. Xu and Y. H. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 75 (2018), 561-581.  doi: 10.1016/j.camwa.2017.09.042.

[12]

L. Zhao and Z.-C. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.  doi: 10.1093/imamat/hxw033.

[13]

J. B. ZhouL. Y. SongJ. D. Wei and H. M. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.  doi: 10.1016/j.jmaa.2019.03.066.

[14]

J. B. ZhouL. Y. Song and J. D. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equ., 268 (2020), 4491-4524.  doi: 10.1016/j.jde.2019.10.034.

[15]

J. L. ZhouY. Yang and C.-H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1469-1495.  doi: 10.3934/dcdsb.2019236.

[1]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[2]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[3]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[4]

Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations and Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008

[5]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[6]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[7]

Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173

[8]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[9]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071

[10]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[11]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[12]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[13]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

[14]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[15]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[16]

Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4737-4754. doi: 10.3934/dcdsb.2020122

[17]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[18]

João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217

[19]

Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575

[20]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (427)
  • HTML views (407)
  • Cited by (0)

Other articles
by authors

[Back to Top]