doi: 10.3934/dcdsb.2021089

Bifurcation in the almost periodic $ 2 $D Ricker map

1. 

Department of Mathematics, California State University Bakersfield, Bakersfield, CA 93311-1022, USA

2. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA

* Corresponding author: Brian Ryals

Received  August 2020 Revised  January 2021 Published  March 2021

Fund Project: RJS is supported by a University of Southern California, Dornsife School of Letters Arts and Sciences Faculty Development Grant, 12-1855-0032

This paper studies bifurcations in the coupled $ 2 $ dimensional almost periodic Ricker map. We establish criteria for stability of an almost periodic solution in terms of the Lyapunov exponents of a corresponding dynamical system and use them to find a bifurcation function. We find that if the almost periodic coefficients of all the maps are identical, then the bifurcation function is the same as the one obtained in the one dimensional case treated earlier, and that this result holds in $ N $ dimension under modest coupling constraints. In the general two-dimensional case, we compute the Lyapunov exponents numerically and use them to examine the stability and bifurcations of the almost periodic solutions.

Citation: Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021089
References:
[1]

A. AvilaJ. SantamariaM. Viana and A. Wilkinson, Cocycles over partially hyperbolic maps, Asterisque, 358 (2013), 1-12.   Google Scholar

[2]

E. C. BalreiraS. Elaydi and R. Luis, Local stability implies global stability for the planar Ricker competition model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 323-351.  doi: 10.3934/dcdsb.2014.19.323.  Google Scholar

[3]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, N. Y., 1947.  Google Scholar

[4] J. W. S. Cassel, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.   Google Scholar
[5]

K. Chandrasekharan, Introduction to Analytic Number Theory, Number 148 in Die Grundlehren der matematishen Wissenshaft in Einzeldarstellung. Springer Verlag, New York, 1968.  Google Scholar

[6]

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Reviews of Modern Physics, 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.  Google Scholar

[7]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics. Springer, New York, USA, third edition, 2005.  Google Scholar

[8]

S. Elaydi and R. J. Sacker, Basin of attraction of periodic orbits of maps on the real line, J Difference Eq and Appl, 10 (2004), 881-888.  doi: 10.1080/10236190410001731443.  Google Scholar

[9]

S. Gershgorin, Uber die Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sci. USSR. Classe des sci. math., 6 (1931), 749-754.   Google Scholar

[10]

M. Keykobad, Positive solutions of positive linear systems, Lin. Alg. and its Appl., 64 (1985), 133-140.  doi: 10.1016/0024-3795(85)90271-X.  Google Scholar

[11]

R. LuisS. Elaydi and an d H. Oliveira, Stability of a ricker-type competition model and the competitive exclusion principle, J. of Biological Dynamics, 5 (2011), 636-660.  doi: 10.1080/17513758.2011.581764.  Google Scholar

[12]

V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math Soc., 19 (1968), 197-231.   Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fisheries Research Board of Canada, 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

B. Ryals, Dynamics of the Degenerate 2D Ricker Equation, Math. Methods Appl. Sci., 42 (2019), 553-566.  doi: 10.1002/mma.5360.  Google Scholar

[15]

B. Ryals, A sufficient condition for stability using slopes of isoclines in planar mappings, J. Difference Eq. and Appl., 26 (2020), 370-383.  doi: 10.1080/10236198.2020.1737034.  Google Scholar

[16]

B. Ryals and R. J. Sacker, Global stability in the 2-D Ricker equation, J Difference Eq and Appl, 21 (2015), 1068-1081.  doi: 10.1080/10236198.2015.1065825.  Google Scholar

[17]

B. Ryals and R. J. Sacker, Global stability in the 2D Ricker equation revisited, Discrete and Continuous Dynam. Syst.-B, 22 (2017), 585-604.  doi: 10.3934/dcdsb.2017028.  Google Scholar

[18]

R. J. Sacker, A Note on periodic Ricker maps, J. Difference Eq. & Appl., 13 (2007), 89-92.  doi: 10.1080/10236190601008752.  Google Scholar

[19]

R. J. Sacker, Bifurcation in the almost periodic Ricker map, J. Difference Eq. and Appl., 25 (2019), 599-618.  doi: 10.1080/10236198.2019.1604696.  Google Scholar

[20]

R. J. Sacker and G. R. Sell, Almost periodicity, Ricker map, Beverton-Holt map and others, a general method, J Difference Eq and Appl, 23 (2017), 1286-1297.  doi: 10.1080/10236198.2017.1320397.  Google Scholar

[21]

R. J. Sacker and G. R. Sell, Corrigendum, J. Difference Eq. Appl., 24 (2018), 164. doi: 10.1080/10236198.2017.1379183.  Google Scholar

[22]

A. Wilkinson, What are Lyapunov exponents, and why are they interesting?, Bull. Amer. Math. Soc., 54 (2017), 79-105.  doi: 10.1090/bull/1552.  Google Scholar

[23]

L. -S. Young, Mathematical theory of Lyapunov exponents, J. Phys. A: Mathematical and Theoretical, 46 (2013), 254001, 17pp. doi: 10.1088/1751-8113/46/25/254001.  Google Scholar

show all references

References:
[1]

A. AvilaJ. SantamariaM. Viana and A. Wilkinson, Cocycles over partially hyperbolic maps, Asterisque, 358 (2013), 1-12.   Google Scholar

[2]

E. C. BalreiraS. Elaydi and R. Luis, Local stability implies global stability for the planar Ricker competition model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 323-351.  doi: 10.3934/dcdsb.2014.19.323.  Google Scholar

[3]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, N. Y., 1947.  Google Scholar

[4] J. W. S. Cassel, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.   Google Scholar
[5]

K. Chandrasekharan, Introduction to Analytic Number Theory, Number 148 in Die Grundlehren der matematishen Wissenshaft in Einzeldarstellung. Springer Verlag, New York, 1968.  Google Scholar

[6]

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Reviews of Modern Physics, 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.  Google Scholar

[7]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics. Springer, New York, USA, third edition, 2005.  Google Scholar

[8]

S. Elaydi and R. J. Sacker, Basin of attraction of periodic orbits of maps on the real line, J Difference Eq and Appl, 10 (2004), 881-888.  doi: 10.1080/10236190410001731443.  Google Scholar

[9]

S. Gershgorin, Uber die Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sci. USSR. Classe des sci. math., 6 (1931), 749-754.   Google Scholar

[10]

M. Keykobad, Positive solutions of positive linear systems, Lin. Alg. and its Appl., 64 (1985), 133-140.  doi: 10.1016/0024-3795(85)90271-X.  Google Scholar

[11]

R. LuisS. Elaydi and an d H. Oliveira, Stability of a ricker-type competition model and the competitive exclusion principle, J. of Biological Dynamics, 5 (2011), 636-660.  doi: 10.1080/17513758.2011.581764.  Google Scholar

[12]

V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math Soc., 19 (1968), 197-231.   Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fisheries Research Board of Canada, 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

B. Ryals, Dynamics of the Degenerate 2D Ricker Equation, Math. Methods Appl. Sci., 42 (2019), 553-566.  doi: 10.1002/mma.5360.  Google Scholar

[15]

B. Ryals, A sufficient condition for stability using slopes of isoclines in planar mappings, J. Difference Eq. and Appl., 26 (2020), 370-383.  doi: 10.1080/10236198.2020.1737034.  Google Scholar

[16]

B. Ryals and R. J. Sacker, Global stability in the 2-D Ricker equation, J Difference Eq and Appl, 21 (2015), 1068-1081.  doi: 10.1080/10236198.2015.1065825.  Google Scholar

[17]

B. Ryals and R. J. Sacker, Global stability in the 2D Ricker equation revisited, Discrete and Continuous Dynam. Syst.-B, 22 (2017), 585-604.  doi: 10.3934/dcdsb.2017028.  Google Scholar

[18]

R. J. Sacker, A Note on periodic Ricker maps, J. Difference Eq. & Appl., 13 (2007), 89-92.  doi: 10.1080/10236190601008752.  Google Scholar

[19]

R. J. Sacker, Bifurcation in the almost periodic Ricker map, J. Difference Eq. and Appl., 25 (2019), 599-618.  doi: 10.1080/10236198.2019.1604696.  Google Scholar

[20]

R. J. Sacker and G. R. Sell, Almost periodicity, Ricker map, Beverton-Holt map and others, a general method, J Difference Eq and Appl, 23 (2017), 1286-1297.  doi: 10.1080/10236198.2017.1320397.  Google Scholar

[21]

R. J. Sacker and G. R. Sell, Corrigendum, J. Difference Eq. Appl., 24 (2018), 164. doi: 10.1080/10236198.2017.1379183.  Google Scholar

[22]

A. Wilkinson, What are Lyapunov exponents, and why are they interesting?, Bull. Amer. Math. Soc., 54 (2017), 79-105.  doi: 10.1090/bull/1552.  Google Scholar

[23]

L. -S. Young, Mathematical theory of Lyapunov exponents, J. Phys. A: Mathematical and Theoretical, 46 (2013), 254001, 17pp. doi: 10.1088/1751-8113/46/25/254001.  Google Scholar

Figure 1.  The stability region of the coexistence fixed point of equation (4) is shown in the $ p $-$ q $ plane for the coupling values $ a = 0.5 $ and $ b = 0.7 $. The geometry is similar for all $ ab < 1 $, with the stability region bounded by two straight lines and a piece of a hyperbola
Figure 2.  Plot of the Bifurcation Equation $ B(\gamma,\gamma,b) = 0 $. A bifurcation takes place as the parameter pair $ (b,\log{\gamma}) $ crosses from the stability region ($ B<0 $) to the instability region ($ B>0 $)
Figure 3.  Plots of the values of the two Lyapunov Exponents $ \chi_1 $ (left plot) and $ \chi_2 $ (right plot) as functions of the parameter $ 0\leq b \leq 0.99 $. Values used were $ \gamma_{01} = e^{1.2} $, $ \gamma_{02} = e^{1.6} $, $ a_{12} = 0.6 $, $ a_{21} = 0.8 $, $ G_1(\theta) = \sin(2\pi \theta) $, $ G_2(\theta) = \sin(2\pi\theta)\cos(2\pi\theta) $, and $ \omega = \frac{e^{\pi}}{25}\approx 0.8984 $. Both are decreasing functions with respect to $ b $. The $ b $ values used were $ 0.01m $ for $ m = 0, 1, \cdots 99 $
Figure 4.  The border of the stability region for an almost periodic solution is shown for the values $ b = 0 $, $ b = 0.2 $, $ b = 0.4 $, and $ b = 0.6 $, in a neighborhood of $ (e^2,e^2) $. Here the $ x $-axis is $ \log(\gamma_{01}) $ and the $ y $-axis is $ \log(\gamma_{02}) $. The curves are ordered from bottom left to top right in order of increasing $ b $, so that the stability region is growing with $ b $. Values used were $ a_{12} = 0.5 $, $ a_{21} = 0.7 $, $ G_1(\theta) = \sin(2\pi \theta) $, $ G_2(\theta) = \sin(2\pi\theta)\cos(2\pi\theta) $, and $ \omega = \frac{e^{\pi}}{25}\approx 0.8984 $
Figure 5.  The top left image shows the long-term dynamics of $ (x_1(t),x_2(t),\gamma_1(t)) $ for $ b = 0.4 $, while the top right shows the long-term dynamics of $ (x_1(t),x_2(t),\gamma_2(t)) $ for the same value of $ b $. The bottom row uses $ b = 0.2 $ instead where the AP solution is unstable. Values used were $ a_{12} = 0.5 $, $ a_{21} = 0.7 $ and the almost periodic sequences are $ G_1(\theta_k) = \sin(2\pi \theta_k) $, $ G_2(\theta_k) = \sin(2\pi\theta_k)\cos(2\pi\theta_k) $ where $ \theta_k = \theta+k\omega $ with $ \omega = \frac{e^{\pi}}{25}\approx 0.8984 $
[1]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[4]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[5]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[6]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[7]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[8]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[12]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[13]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[14]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[15]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[16]

Philippe Jouan, Ronald Manríquez. Solvable approximations of 3-dimensional almost-Riemannian structures. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021023

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[19]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[20]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (18)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]