-
Previous Article
The spatially heterogeneous diffusive rabies model and its shadow system
- DCDS-B Home
- This Issue
-
Next Article
Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions
Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns
1. | School of Science, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China |
2. | Department of Gastroenterology, Xi'an Honghui Hospital, Xi'an, Shaanxi 710000, China |
In this work, we consider a diffusive tumor-CD4$ ^+ $-cytokine interactions model with immunotherapy under homogeneous Neumann boundary conditions. We first investigate the large-time behavior of nonnegative equilibria, including the system persistence and the stability conditions. We also give the existence of nonconstant positive steady states (i.e., a stationary pattern), which indicate that this stationary pattern is driven by diffusion effects. For this study, we employ the comparison principle for parabolic systems, linearization method, the method of energy integral and the Leray-Schauder degree.
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
L. Anderson, S. Jang and J. L. Yu,
Qualitative behavior of systems of tumor-${\rm{CD}}4^+$-cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330-4344.
doi: 10.1002/mma.3370. |
[3] |
F. Ansarizadeh, M. Singh and D. Richards,
Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Modelling, 48 (2017), 96-112.
doi: 10.1016/j.apm.2017.03.045. |
[4] |
M. A. Brown and J. Hural,
Functions of IL-4 and control of its expression, Critical Reviews in Immunology, 17 (1997), 1-32.
doi: 10.1615/CritRevImmunol.v17.i1.10. |
[5] |
F. Dai and B. Liu,
Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy, J. Franklin Inst., 358 (2021), 448-473.
doi: 10.1016/j.jfranklin.2020.10.032. |
[6] |
A. D'Onofrio,
Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Modelling, 47 (2008), 614-637.
doi: 10.1016/j.mcm.2007.02.032. |
[7] |
A. D'Onofrio,
A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.
doi: 10.1016/j.physd.2005.06.032. |
[8] |
A. Ducrot and J. Guo,
Asymptotic behavior of solutions to a class of diffusive predator-prey systems, J. Evol. Equ., 18 (2018), 755-775.
doi: 10.1007/s00028-017-0418-y. |
[9] |
S. Habib, M. P. Carmen and S. D. Thomas,
Complex dynamics of tumors: Modeling an emerging brain tumor system with coupled reaction-diffusion equations, Physica A: Statistical Mechanics and its Applications, 327 (2003), 501-524.
doi: 10.1016/S0378-4371(03)00391-1. |
[10] |
L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy and C. T. Weaver,
Interleukin 17-producing cd4+ effector t cells develop via a lineage distinct from the t helper type 1 and 2 lineages, Nature Immunology, 6 (2005), 1123-1132.
doi: 10.1038/ni1254. |
[11] |
C. Lin, W. Ni and I. Takagi,
Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[12] |
Y. Lou and W.-M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[13] |
J. Manimaran and L. Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, Computational and Mathematical Methods, 2 (2020), e1068, 20pp.
doi: 10.1002/cmm4.1068. |
[14] |
C.-V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() |
[15] |
W. -E. Paul, Fundamental Immunology, 6$^nd$ edition, Lippincott Williams & Wilkins, Philadelphia, 2008. Google Scholar |
[16] |
W. Raymond and M.-D. Ruddon, Cancer Biology, 4 |
[17] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^nd$ edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[18] |
J. P. Tripathi, S. Abbas and M. Thakur,
Dynamical analysis of a prey-predator model with Beddington-Deangelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177-196.
doi: 10.1007/s11071-014-1859-2. |
[19] |
W. Yang,
Existence and asymptotic behavior of solutions for a mathematical ecology model with herd behavior, Math. Methods Appl. Sci., 43 (2020), 5629-5644.
doi: 10.1002/mma.6301. |
[20] |
L. Yang and S. Zhong,
Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive allee effect, Comput. Appl. Math., 34 (2015), 671-690.
doi: 10.1007/s40314-014-0131-1. |
[21] |
R. Zeng, Qualitative analysis of a strongly coupled predator-prey system with modified Holling-Tnner functional response, Bound. Value Probl., 2018 (2018), Paper No. 98, 21 pp.
doi: 10.1186/s13661-018-1015-x. |
[22] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1986. |
show all references
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
L. Anderson, S. Jang and J. L. Yu,
Qualitative behavior of systems of tumor-${\rm{CD}}4^+$-cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330-4344.
doi: 10.1002/mma.3370. |
[3] |
F. Ansarizadeh, M. Singh and D. Richards,
Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Modelling, 48 (2017), 96-112.
doi: 10.1016/j.apm.2017.03.045. |
[4] |
M. A. Brown and J. Hural,
Functions of IL-4 and control of its expression, Critical Reviews in Immunology, 17 (1997), 1-32.
doi: 10.1615/CritRevImmunol.v17.i1.10. |
[5] |
F. Dai and B. Liu,
Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy, J. Franklin Inst., 358 (2021), 448-473.
doi: 10.1016/j.jfranklin.2020.10.032. |
[6] |
A. D'Onofrio,
Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Modelling, 47 (2008), 614-637.
doi: 10.1016/j.mcm.2007.02.032. |
[7] |
A. D'Onofrio,
A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.
doi: 10.1016/j.physd.2005.06.032. |
[8] |
A. Ducrot and J. Guo,
Asymptotic behavior of solutions to a class of diffusive predator-prey systems, J. Evol. Equ., 18 (2018), 755-775.
doi: 10.1007/s00028-017-0418-y. |
[9] |
S. Habib, M. P. Carmen and S. D. Thomas,
Complex dynamics of tumors: Modeling an emerging brain tumor system with coupled reaction-diffusion equations, Physica A: Statistical Mechanics and its Applications, 327 (2003), 501-524.
doi: 10.1016/S0378-4371(03)00391-1. |
[10] |
L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy and C. T. Weaver,
Interleukin 17-producing cd4+ effector t cells develop via a lineage distinct from the t helper type 1 and 2 lineages, Nature Immunology, 6 (2005), 1123-1132.
doi: 10.1038/ni1254. |
[11] |
C. Lin, W. Ni and I. Takagi,
Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[12] |
Y. Lou and W.-M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[13] |
J. Manimaran and L. Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, Computational and Mathematical Methods, 2 (2020), e1068, 20pp.
doi: 10.1002/cmm4.1068. |
[14] |
C.-V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() |
[15] |
W. -E. Paul, Fundamental Immunology, 6$^nd$ edition, Lippincott Williams & Wilkins, Philadelphia, 2008. Google Scholar |
[16] |
W. Raymond and M.-D. Ruddon, Cancer Biology, 4 |
[17] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^nd$ edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[18] |
J. P. Tripathi, S. Abbas and M. Thakur,
Dynamical analysis of a prey-predator model with Beddington-Deangelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177-196.
doi: 10.1007/s11071-014-1859-2. |
[19] |
W. Yang,
Existence and asymptotic behavior of solutions for a mathematical ecology model with herd behavior, Math. Methods Appl. Sci., 43 (2020), 5629-5644.
doi: 10.1002/mma.6301. |
[20] |
L. Yang and S. Zhong,
Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive allee effect, Comput. Appl. Math., 34 (2015), 671-690.
doi: 10.1007/s40314-014-0131-1. |
[21] |
R. Zeng, Qualitative analysis of a strongly coupled predator-prey system with modified Holling-Tnner functional response, Bound. Value Probl., 2018 (2018), Paper No. 98, 21 pp.
doi: 10.1186/s13661-018-1015-x. |
[22] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1986. |
[1] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[2] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[3] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[4] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[5] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[6] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021029 |
[7] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[8] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[9] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[10] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[11] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[12] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[13] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[14] |
Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243 |
[15] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[16] |
Shixiong Wang, Longjiang Qu, Chao Li, Shaojing Fu, Hao Chen. Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem. Advances in Mathematics of Communications, 2021, 15 (3) : 441-469. doi: 10.3934/amc.2020076 |
[17] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[18] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[19] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[20] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]