• Previous Article
    Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise
  • DCDS-B Home
  • This Issue
  • Next Article
    Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise
doi: 10.3934/dcdsb.2021091

Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations

School of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

* Corresponding author: Xiaoju Zhang

Received  October 2020 Published  March 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China grant No.11771107

In this paper, we investigate initial boundary value problems for Kirchhoff-type diffusion equations $ \partial_{t}^{\beta}u+M(\|u\|_{H_0^{s}(\Omega)}^2)(-\Delta)^{s}u = \gamma|u|^{\rho}u+g(t,x) $ with the Caputo time fractional derivatives and fractional Laplacian operators. We establish a new compactness theorem concerning time fractional derivatives. By Galerkin method, let $ 0<\rho<\frac{4s}{N-2s} $ when $ \gamma<0 $, and $ 0<\rho<\min\{\frac{4s}{N},\frac{2s}{N-2s}\} $ when $ \gamma>0 $, then we obtain the global existence and uniqueness of weak solutions for Kirchhoff problems. Furthermore, we get the decay properties of weak solutions in $ L^2(\Omega) $ and $ L^{\rho+2}(\Omega) $. Remarkably, the decay rate differs from that in the case $ \beta = 1 $.

Citation: Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021091
References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problems involving the Dirichlet energy, Rend. Semin. Mat. Univ. Padova, 110 (2003), 199-220.  doi: 10.5167/uzh-21865.  Google Scholar

[3]

D. del-Castillo-NegreteB. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulance,, Phys. Plasmas, 11 (2004), 3854-3864.  doi: 10.1063/1.1767097.  Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[5]

H. Ding and J. Zhou, Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 33 (2020), 1046-1063.  doi: 10.1088/1361-6544/ab5920.  Google Scholar

[6]

Y. Q. Fu and M. Q. Xiang, The existence of weak solutions for parabolic variational inequalities with $(p(x,t),q(x,t))$-growth, Appl. Anal., 93 (2014), 65-83.  doi: 10.1080/00036811.2012.755735.  Google Scholar

[7]

Y. Q. Fu, On potential wells and vacuum isolating of solutions for space-fractional wave equations,, Adv. Differential Equations and Control Processes, 18 (2017), 149-176.  doi: 10.17654/DE018030149.  Google Scholar

[8]

R. GorenfloY. Luchko and M. Yamamoto, Time-Fractional diffusion equation in the fractional Sobolev spaces,, Fract. Calc. Appl. Anal., 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[9]

B. L. Guo, X. K. Pu and F. H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Originally published by Science Press in 2011. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9543.  Google Scholar

[10]

P. Hartman, Ordinary Differential Equations, 2$^nd$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 1982. doi: 10.1137/1.9780898719222.  Google Scholar

[11]

Y. Z. Han and Q. W. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[12]

Y. Z. HanW. J. GaoZ. Sun and H. X. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[13]

J. X. JiaJ. G. Peng and J. Q. Yang, Harnack's inequality for a space-time fractional diffusion equation and applications to an inverse source problem, J. Differential Equations, 262 (2017), 4415-4450.  doi: 10.1016/j.jde.2017.01.002.  Google Scholar

[14]

V. N. Kolokoltsov and M. A. Veretennikov, Well-posedness and regularity of the cauchy problem for nonlinear fractional in time and space equations,, Fract. Differ. Calc., 4 (2014), 1-30.  doi: 10.7153/fdc-04-01.  Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[16]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, 1969.  Google Scholar

[17]

L. Li and J. G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50 (2018), 3963-3995.  doi: 10.1137/17M1145549.  Google Scholar

[18]

L. LiJ. G. Liu and L. Z. Wang, Cauchy problems for Keller-Seqel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[19]

E. Nane, Fractional cauchy problems on bounded domains: Survey of recent results, in Fractional Dynamics and Control, Springer, (2012), 185-198. doi: 10.1007/978-1-4614-0457-6_15.  Google Scholar

[20]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[21]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[22]

N. PanB. L. Zhang and J. Cao, Degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian, Nonlinear Anal. Real World Appl., 37 (2017), 56-70.  doi: 10.1016/j.nonrwa.2017.02.004.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2015-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[25]

V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z., 259 (2008), 287-309.  doi: 10.1007/s00209-007-0225-1.  Google Scholar

[26]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods,, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[27]

M. Q. Xiang and Y. Q. Fu, Weak solutions for nonlocal evolutional inequalities involving gradient constraints and variable exponent, Electron. J. Differential Equations, 2013 (2013), 1-17.  doi: 10.1186/1687-2770-2013-96.  Google Scholar

[28]

M. Q. XiangV. D. Rǎdulescu and B. L. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[29]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[30]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[31]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkc. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[32]

R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations,, Math. Ann., 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

[33]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations,, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[34]

Q. G. ZhangH. R. Sun and Y. N. Li, Global existence and blow-up of solutions of Cauchy problems for a time fractional diffusion system, Comput. Math. Appl., 78 (2019), 1357-1366.  doi: 10.1016/j.camwa.2019.03.013.  Google Scholar

show all references

References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problems involving the Dirichlet energy, Rend. Semin. Mat. Univ. Padova, 110 (2003), 199-220.  doi: 10.5167/uzh-21865.  Google Scholar

[3]

D. del-Castillo-NegreteB. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulance,, Phys. Plasmas, 11 (2004), 3854-3864.  doi: 10.1063/1.1767097.  Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[5]

H. Ding and J. Zhou, Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 33 (2020), 1046-1063.  doi: 10.1088/1361-6544/ab5920.  Google Scholar

[6]

Y. Q. Fu and M. Q. Xiang, The existence of weak solutions for parabolic variational inequalities with $(p(x,t),q(x,t))$-growth, Appl. Anal., 93 (2014), 65-83.  doi: 10.1080/00036811.2012.755735.  Google Scholar

[7]

Y. Q. Fu, On potential wells and vacuum isolating of solutions for space-fractional wave equations,, Adv. Differential Equations and Control Processes, 18 (2017), 149-176.  doi: 10.17654/DE018030149.  Google Scholar

[8]

R. GorenfloY. Luchko and M. Yamamoto, Time-Fractional diffusion equation in the fractional Sobolev spaces,, Fract. Calc. Appl. Anal., 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[9]

B. L. Guo, X. K. Pu and F. H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Originally published by Science Press in 2011. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9543.  Google Scholar

[10]

P. Hartman, Ordinary Differential Equations, 2$^nd$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 1982. doi: 10.1137/1.9780898719222.  Google Scholar

[11]

Y. Z. Han and Q. W. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[12]

Y. Z. HanW. J. GaoZ. Sun and H. X. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[13]

J. X. JiaJ. G. Peng and J. Q. Yang, Harnack's inequality for a space-time fractional diffusion equation and applications to an inverse source problem, J. Differential Equations, 262 (2017), 4415-4450.  doi: 10.1016/j.jde.2017.01.002.  Google Scholar

[14]

V. N. Kolokoltsov and M. A. Veretennikov, Well-posedness and regularity of the cauchy problem for nonlinear fractional in time and space equations,, Fract. Differ. Calc., 4 (2014), 1-30.  doi: 10.7153/fdc-04-01.  Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[16]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, 1969.  Google Scholar

[17]

L. Li and J. G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50 (2018), 3963-3995.  doi: 10.1137/17M1145549.  Google Scholar

[18]

L. LiJ. G. Liu and L. Z. Wang, Cauchy problems for Keller-Seqel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[19]

E. Nane, Fractional cauchy problems on bounded domains: Survey of recent results, in Fractional Dynamics and Control, Springer, (2012), 185-198. doi: 10.1007/978-1-4614-0457-6_15.  Google Scholar

[20]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[21]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[22]

N. PanB. L. Zhang and J. Cao, Degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian, Nonlinear Anal. Real World Appl., 37 (2017), 56-70.  doi: 10.1016/j.nonrwa.2017.02.004.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2015-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[25]

V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z., 259 (2008), 287-309.  doi: 10.1007/s00209-007-0225-1.  Google Scholar

[26]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods,, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[27]

M. Q. Xiang and Y. Q. Fu, Weak solutions for nonlocal evolutional inequalities involving gradient constraints and variable exponent, Electron. J. Differential Equations, 2013 (2013), 1-17.  doi: 10.1186/1687-2770-2013-96.  Google Scholar

[28]

M. Q. XiangV. D. Rǎdulescu and B. L. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[29]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[30]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[31]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkc. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[32]

R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations,, Math. Ann., 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

[33]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations,, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[34]

Q. G. ZhangH. R. Sun and Y. N. Li, Global existence and blow-up of solutions of Cauchy problems for a time fractional diffusion system, Comput. Math. Appl., 78 (2019), 1357-1366.  doi: 10.1016/j.camwa.2019.03.013.  Google Scholar

[1]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[2]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[4]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[5]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[6]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[7]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[8]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[9]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[10]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[11]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[12]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[13]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[14]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[15]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[16]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[17]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[18]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[19]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[20]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (74)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]