• Previous Article
    Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum
  • DCDS-B Home
  • This Issue
  • Next Article
    Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise
doi: 10.3934/dcdsb.2021091
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations

School of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

* Corresponding author: Xiaoju Zhang

Received  October 2020 Early access March 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China grant No.11771107

In this paper, we investigate initial boundary value problems for Kirchhoff-type diffusion equations $ \partial_{t}^{\beta}u+M(\|u\|_{H_0^{s}(\Omega)}^2)(-\Delta)^{s}u = \gamma|u|^{\rho}u+g(t,x) $ with the Caputo time fractional derivatives and fractional Laplacian operators. We establish a new compactness theorem concerning time fractional derivatives. By Galerkin method, let $ 0<\rho<\frac{4s}{N-2s} $ when $ \gamma<0 $, and $ 0<\rho<\min\{\frac{4s}{N},\frac{2s}{N-2s}\} $ when $ \gamma>0 $, then we obtain the global existence and uniqueness of weak solutions for Kirchhoff problems. Furthermore, we get the decay properties of weak solutions in $ L^2(\Omega) $ and $ L^{\rho+2}(\Omega) $. Remarkably, the decay rate differs from that in the case $ \beta = 1 $.

Citation: Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021091
References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problems involving the Dirichlet energy, Rend. Semin. Mat. Univ. Padova, 110 (2003), 199-220.  doi: 10.5167/uzh-21865.  Google Scholar

[3]

D. del-Castillo-NegreteB. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulance,, Phys. Plasmas, 11 (2004), 3854-3864.  doi: 10.1063/1.1767097.  Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[5]

H. Ding and J. Zhou, Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 33 (2020), 1046-1063.  doi: 10.1088/1361-6544/ab5920.  Google Scholar

[6]

Y. Q. Fu and M. Q. Xiang, The existence of weak solutions for parabolic variational inequalities with $(p(x,t),q(x,t))$-growth, Appl. Anal., 93 (2014), 65-83.  doi: 10.1080/00036811.2012.755735.  Google Scholar

[7]

Y. Q. Fu, On potential wells and vacuum isolating of solutions for space-fractional wave equations,, Adv. Differential Equations and Control Processes, 18 (2017), 149-176.  doi: 10.17654/DE018030149.  Google Scholar

[8]

R. GorenfloY. Luchko and M. Yamamoto, Time-Fractional diffusion equation in the fractional Sobolev spaces,, Fract. Calc. Appl. Anal., 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[9]

B. L. Guo, X. K. Pu and F. H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Originally published by Science Press in 2011. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9543.  Google Scholar

[10]

P. Hartman, Ordinary Differential Equations, 2$^nd$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 1982. doi: 10.1137/1.9780898719222.  Google Scholar

[11]

Y. Z. Han and Q. W. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[12]

Y. Z. HanW. J. GaoZ. Sun and H. X. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[13]

J. X. JiaJ. G. Peng and J. Q. Yang, Harnack's inequality for a space-time fractional diffusion equation and applications to an inverse source problem, J. Differential Equations, 262 (2017), 4415-4450.  doi: 10.1016/j.jde.2017.01.002.  Google Scholar

[14]

V. N. Kolokoltsov and M. A. Veretennikov, Well-posedness and regularity of the cauchy problem for nonlinear fractional in time and space equations,, Fract. Differ. Calc., 4 (2014), 1-30.  doi: 10.7153/fdc-04-01.  Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[16]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, 1969.  Google Scholar

[17]

L. Li and J. G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50 (2018), 3963-3995.  doi: 10.1137/17M1145549.  Google Scholar

[18]

L. LiJ. G. Liu and L. Z. Wang, Cauchy problems for Keller-Seqel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[19]

E. Nane, Fractional cauchy problems on bounded domains: Survey of recent results, in Fractional Dynamics and Control, Springer, (2012), 185-198. doi: 10.1007/978-1-4614-0457-6_15.  Google Scholar

[20]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[21]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[22]

N. PanB. L. Zhang and J. Cao, Degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian, Nonlinear Anal. Real World Appl., 37 (2017), 56-70.  doi: 10.1016/j.nonrwa.2017.02.004.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2015-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[25]

V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z., 259 (2008), 287-309.  doi: 10.1007/s00209-007-0225-1.  Google Scholar

[26]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods,, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[27]

M. Q. Xiang and Y. Q. Fu, Weak solutions for nonlocal evolutional inequalities involving gradient constraints and variable exponent, Electron. J. Differential Equations, 2013 (2013), 1-17.  doi: 10.1186/1687-2770-2013-96.  Google Scholar

[28]

M. Q. XiangV. D. Rǎdulescu and B. L. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[29]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[30]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[31]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkc. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[32]

R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations,, Math. Ann., 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

[33]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations,, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[34]

Q. G. ZhangH. R. Sun and Y. N. Li, Global existence and blow-up of solutions of Cauchy problems for a time fractional diffusion system, Comput. Math. Appl., 78 (2019), 1357-1366.  doi: 10.1016/j.camwa.2019.03.013.  Google Scholar

show all references

References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problems involving the Dirichlet energy, Rend. Semin. Mat. Univ. Padova, 110 (2003), 199-220.  doi: 10.5167/uzh-21865.  Google Scholar

[3]

D. del-Castillo-NegreteB. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulance,, Phys. Plasmas, 11 (2004), 3854-3864.  doi: 10.1063/1.1767097.  Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[5]

H. Ding and J. Zhou, Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 33 (2020), 1046-1063.  doi: 10.1088/1361-6544/ab5920.  Google Scholar

[6]

Y. Q. Fu and M. Q. Xiang, The existence of weak solutions for parabolic variational inequalities with $(p(x,t),q(x,t))$-growth, Appl. Anal., 93 (2014), 65-83.  doi: 10.1080/00036811.2012.755735.  Google Scholar

[7]

Y. Q. Fu, On potential wells and vacuum isolating of solutions for space-fractional wave equations,, Adv. Differential Equations and Control Processes, 18 (2017), 149-176.  doi: 10.17654/DE018030149.  Google Scholar

[8]

R. GorenfloY. Luchko and M. Yamamoto, Time-Fractional diffusion equation in the fractional Sobolev spaces,, Fract. Calc. Appl. Anal., 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[9]

B. L. Guo, X. K. Pu and F. H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Originally published by Science Press in 2011. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9543.  Google Scholar

[10]

P. Hartman, Ordinary Differential Equations, 2$^nd$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 1982. doi: 10.1137/1.9780898719222.  Google Scholar

[11]

Y. Z. Han and Q. W. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[12]

Y. Z. HanW. J. GaoZ. Sun and H. X. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[13]

J. X. JiaJ. G. Peng and J. Q. Yang, Harnack's inequality for a space-time fractional diffusion equation and applications to an inverse source problem, J. Differential Equations, 262 (2017), 4415-4450.  doi: 10.1016/j.jde.2017.01.002.  Google Scholar

[14]

V. N. Kolokoltsov and M. A. Veretennikov, Well-posedness and regularity of the cauchy problem for nonlinear fractional in time and space equations,, Fract. Differ. Calc., 4 (2014), 1-30.  doi: 10.7153/fdc-04-01.  Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[16]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, 1969.  Google Scholar

[17]

L. Li and J. G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50 (2018), 3963-3995.  doi: 10.1137/17M1145549.  Google Scholar

[18]

L. LiJ. G. Liu and L. Z. Wang, Cauchy problems for Keller-Seqel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[19]

E. Nane, Fractional cauchy problems on bounded domains: Survey of recent results, in Fractional Dynamics and Control, Springer, (2012), 185-198. doi: 10.1007/978-1-4614-0457-6_15.  Google Scholar

[20]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[21]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[22]

N. PanB. L. Zhang and J. Cao, Degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian, Nonlinear Anal. Real World Appl., 37 (2017), 56-70.  doi: 10.1016/j.nonrwa.2017.02.004.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2015-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[25]

V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z., 259 (2008), 287-309.  doi: 10.1007/s00209-007-0225-1.  Google Scholar

[26]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods,, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[27]

M. Q. Xiang and Y. Q. Fu, Weak solutions for nonlocal evolutional inequalities involving gradient constraints and variable exponent, Electron. J. Differential Equations, 2013 (2013), 1-17.  doi: 10.1186/1687-2770-2013-96.  Google Scholar

[28]

M. Q. XiangV. D. Rǎdulescu and B. L. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[29]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[30]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[31]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkc. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[32]

R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations,, Math. Ann., 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

[33]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations,, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[34]

Q. G. ZhangH. R. Sun and Y. N. Li, Global existence and blow-up of solutions of Cauchy problems for a time fractional diffusion system, Comput. Math. Appl., 78 (2019), 1357-1366.  doi: 10.1016/j.camwa.2019.03.013.  Google Scholar

[1]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[2]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure & Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[3]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[4]

Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure & Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445

[5]

Qiang Lin, Xueteng Tian, Runzhang Xu, Meina Zhang. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 2095-2107. doi: 10.3934/dcdss.2020160

[6]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[7]

Mingqi Xiang, Binlin Zhang, Die Hu. Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping. Electronic Research Archive, 2020, 28 (2) : 651-669. doi: 10.3934/era.2020034

[8]

Gui-Qiang Chen, Kenneth Hvistendahl Karlsen. Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Communications on Pure & Applied Analysis, 2005, 4 (2) : 241-266. doi: 10.3934/cpaa.2005.4.241

[9]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[10]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[11]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[12]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354

[14]

Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240

[15]

Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure & Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031

[16]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[17]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[18]

Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021015

[19]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[20]

Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351

2020 Impact Factor: 1.327

Article outline

[Back to Top]