doi: 10.3934/dcdsb.2021093
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation

1. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain

* Corresponding author

Received  November 2020 Revised  February 2021 Early access March 2021

Fund Project: This work was supported by the National Natural Science Foundation of China under grant 41875084, and by FEDER and Ministerio de Ciencia, Innovación y Universidades of Spain (Grant PGC2018-096540-B-I00), and Junta de Andalucía, Spain (Grant US-1254251)

In this paper we investigate the regularity of global attractors and of exponential attractors for two dimensional quasi-geostrophic equations with fractional dissipation in $ H^{2\alpha+s}(\mathbb{T}^2) $ with $ \alpha>\frac{1}{2} $ and $ s>1. $ We prove the existence of $ (H^{2\alpha^-+s}(\mathbb{T}^2),H^{2\alpha+s}(\mathbb{T}^2)) $-global attractor $ \mathcal{A}, $ that is, $ \mathcal{A} $ is compact in $ H^{2\alpha+s}(\mathbb{T}^2) $ and attracts all bounded subsets of $ H^{2\alpha^-+s}(\mathbb{T}^2) $ with respect to the norm of $ H^{2\alpha+s}(\mathbb{T}^2). $ The asymptotic compactness of solutions in $ H^{2\alpha+s}(\mathbb{T}^2) $ is established by using commutator estimates for nonlinear terms, the spectral decomposition of solutions and new estimates of higher order derivatives. Furthermore, we show the existence of the exponential attractor in $ H^{2\alpha+s}(\mathbb{T}^2), $ whose compactness, boundedness of the fractional dimension and exponential attractiveness for the bounded subset of $ H^{2\alpha^-+s}(\mathbb{T}^2) $ are all in the topology of $ H^{2\alpha+s}(\mathbb{T}^2). $

Citation: Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021093
References:
[1] R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, vol. 65, Academic Press, New York-London, 1975.   Google Scholar
[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

L. C. Berselli, Vanishing viscosity limit and long-time behavior for $2$D quasi-geostrophic equations, Indiana Univ. Math. J., 51 (2002), 905–930. doi: 10.1512/iumj.2002.51.2075.  Google Scholar

[4]

V. Berti and S. Gatti, Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, Quart. Appl. Math., 64 (2006), 617–639. doi: 10.1090/S0033-569X-06-01044-9.  Google Scholar

[5]

J. W. Cholewa and T. Dlotko, Bi-spaces global attractors in abstract parabolic equations, Evolution equations, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 60 (2003), 13–26.  Google Scholar

[6] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[7]

P. Constantin, M. Coti Zelati and V. Vicol, Uniformly attracting limit sets for the critically dissipative SQG equation, Nonlinearity, 29 (2016), 298–318. doi: 10.1088/0951-7715/29/2/298.  Google Scholar

[8] P. Constantin and C. Foiaş, Navier-Stokes Equations,, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[9]

P. Constantin, A. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Comm. Math. Phys., 335 (2015), 93–141. doi: 10.1007/s00220-014-2129-3.  Google Scholar

[10]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511–528. doi: 10.1007/s00220-004-1055-1.  Google Scholar

[11]

M. Coti Zelati and P. Kalita, Smooth attractors for weak solutions of the SQG equation with critical dissipation, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1857–1873. doi: 10.3934/dcdsb.2017110.  Google Scholar

[12]

T. Dlotko, M. B. Kania and C. Sun, Quasi-geostrophic equation in $\mathbb{R}^2$, J. Differential Equations, 259 (2015), 531–561. doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[13]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equation, Research in Applied Mathematics, vol. 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[14]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713–718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[15]

R. Farwig and C. Qian, Asymptotic behavior for the quasi-geostrophic equations with fractional dissipation in $\mathbb{R}^2$, J. Differential Equations, 266 (2019), 6525–6579. doi: 10.1016/j.jde.2018.11.009.  Google Scholar

[16]

C. Foiaş and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34.  Google Scholar

[17]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117–127. doi: 10.1090/S0002-9939-05-08340-1.  Google Scholar

[18]

Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267–281. doi: 10.1007/BF00276875.  Google Scholar

[19]

A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094–7137. doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[20]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, , Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[21]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[22]

N. Ju, The maximum principle and the global attractor for the dissipative $2$D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161–181. doi: 10.1007/s00220-004-1256-7.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323–347. doi: 10.2307/2939277.  Google Scholar

[25]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, vol. 187, North-Holland Publishing Co., Amsterdam, 2001.  Google Scholar

[26]

C. J. Niche and M. E. Schonbek, Decay of weak solutions to the $2$D dissipative quasi-geostrophic equation, Comm. Math. Phys., 276 (2007), 93–115. doi: 10.1007/s00220-007-0327-y.  Google Scholar

[27]

C. J. Niche and M. E. Schonbek, Decay characterization of solutions to dissipative equations, J. Lond. Math. Soc., 91 (2015), 573–595. doi: 10.1112/jlms/jdu085.  Google Scholar

[28]

J. Pedlosky, Geophysical Fluid Dynamics, Springer, Berlin, 1982. Google Scholar

[29]

G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 885–982. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[30] J. C. Robinson, Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.   Google Scholar
[31]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1–33. Google Scholar

[32] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1970.   Google Scholar
[33]

C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal., 63 (2005), 49–65. doi: 10.1016/j.na.2005.04.034.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, , Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

S. Wang, Attractors for the $3$D baroclinic quasi-geostrophic equations of large-scale atmosphere, J. Math. Anal. Appl., 165 (1992), 266–283. doi: 10.1016/0022-247X(92)90078-R.  Google Scholar

[36]

M. Wang and Y. Tang, Long time dynamics of $2$D quasi-geostrophic equations with damping in $L^p$, J. Math. Anal. Appl., 412 (2014), 866–877. doi: 10.1016/j.jmaa.2013.11.019.  Google Scholar

[37]

M. Wang and Y. Tang, On dimension of the global attractor for 2D quasi-geostrophic equations, Nonlinear Anal. Real World Appl., 14 (2013), 1887–1895. doi: 10.1016/j.nonrwa.2012.12.005.  Google Scholar

[38]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations, 2001 (2001), 1–13.  Google Scholar

[39]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, , Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

[40]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367–399. doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, vol. 65, Academic Press, New York-London, 1975.   Google Scholar
[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

L. C. Berselli, Vanishing viscosity limit and long-time behavior for $2$D quasi-geostrophic equations, Indiana Univ. Math. J., 51 (2002), 905–930. doi: 10.1512/iumj.2002.51.2075.  Google Scholar

[4]

V. Berti and S. Gatti, Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, Quart. Appl. Math., 64 (2006), 617–639. doi: 10.1090/S0033-569X-06-01044-9.  Google Scholar

[5]

J. W. Cholewa and T. Dlotko, Bi-spaces global attractors in abstract parabolic equations, Evolution equations, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 60 (2003), 13–26.  Google Scholar

[6] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[7]

P. Constantin, M. Coti Zelati and V. Vicol, Uniformly attracting limit sets for the critically dissipative SQG equation, Nonlinearity, 29 (2016), 298–318. doi: 10.1088/0951-7715/29/2/298.  Google Scholar

[8] P. Constantin and C. Foiaş, Navier-Stokes Equations,, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[9]

P. Constantin, A. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Comm. Math. Phys., 335 (2015), 93–141. doi: 10.1007/s00220-014-2129-3.  Google Scholar

[10]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511–528. doi: 10.1007/s00220-004-1055-1.  Google Scholar

[11]

M. Coti Zelati and P. Kalita, Smooth attractors for weak solutions of the SQG equation with critical dissipation, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1857–1873. doi: 10.3934/dcdsb.2017110.  Google Scholar

[12]

T. Dlotko, M. B. Kania and C. Sun, Quasi-geostrophic equation in $\mathbb{R}^2$, J. Differential Equations, 259 (2015), 531–561. doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[13]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equation, Research in Applied Mathematics, vol. 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[14]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713–718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[15]

R. Farwig and C. Qian, Asymptotic behavior for the quasi-geostrophic equations with fractional dissipation in $\mathbb{R}^2$, J. Differential Equations, 266 (2019), 6525–6579. doi: 10.1016/j.jde.2018.11.009.  Google Scholar

[16]

C. Foiaş and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34.  Google Scholar

[17]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117–127. doi: 10.1090/S0002-9939-05-08340-1.  Google Scholar

[18]

Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267–281. doi: 10.1007/BF00276875.  Google Scholar

[19]

A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094–7137. doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[20]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, , Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[21]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[22]

N. Ju, The maximum principle and the global attractor for the dissipative $2$D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161–181. doi: 10.1007/s00220-004-1256-7.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323–347. doi: 10.2307/2939277.  Google Scholar

[25]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, vol. 187, North-Holland Publishing Co., Amsterdam, 2001.  Google Scholar

[26]

C. J. Niche and M. E. Schonbek, Decay of weak solutions to the $2$D dissipative quasi-geostrophic equation, Comm. Math. Phys., 276 (2007), 93–115. doi: 10.1007/s00220-007-0327-y.  Google Scholar

[27]

C. J. Niche and M. E. Schonbek, Decay characterization of solutions to dissipative equations, J. Lond. Math. Soc., 91 (2015), 573–595. doi: 10.1112/jlms/jdu085.  Google Scholar

[28]

J. Pedlosky, Geophysical Fluid Dynamics, Springer, Berlin, 1982. Google Scholar

[29]

G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 885–982. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[30] J. C. Robinson, Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.   Google Scholar
[31]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1–33. Google Scholar

[32] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1970.   Google Scholar
[33]

C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal., 63 (2005), 49–65. doi: 10.1016/j.na.2005.04.034.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, , Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

S. Wang, Attractors for the $3$D baroclinic quasi-geostrophic equations of large-scale atmosphere, J. Math. Anal. Appl., 165 (1992), 266–283. doi: 10.1016/0022-247X(92)90078-R.  Google Scholar

[36]

M. Wang and Y. Tang, Long time dynamics of $2$D quasi-geostrophic equations with damping in $L^p$, J. Math. Anal. Appl., 412 (2014), 866–877. doi: 10.1016/j.jmaa.2013.11.019.  Google Scholar

[37]

M. Wang and Y. Tang, On dimension of the global attractor for 2D quasi-geostrophic equations, Nonlinear Anal. Real World Appl., 14 (2013), 1887–1895. doi: 10.1016/j.nonrwa.2012.12.005.  Google Scholar

[38]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations, 2001 (2001), 1–13.  Google Scholar

[39]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, , Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

[40]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367–399. doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[2]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[3]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[4]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[5]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336

[6]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[7]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216

[8]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

[9]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[10]

Tongtong Liang, Yejuan Wang. Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4697-4726. doi: 10.3934/dcdsb.2020309

[11]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[12]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[13]

Wenru Huo, Aimin Huang. The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2531-2550. doi: 10.3934/dcdsb.2016059

[14]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[15]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[16]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[17]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[18]

Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023

[19]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[20]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

2020 Impact Factor: 1.327

Article outline

[Back to Top]