• Previous Article
    Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces
doi: 10.3934/dcdsb.2021094

Boundary-value problems for weakly singular integral equations

Institute of Mathematics of the National Academy of Sciences of Ukraine, 3, Tereshchenkivska Str., Kyiv, 01024, Ukraine

Received  April 2020 Revised  August 2020 Published  March 2021

Fund Project: The present work was supported by the Grant H2020-MSCA-RISE-2019, project number 873071 (SOMPATY: Spectral Optimization: From Mathematics to Physics and Advanced Technology)

We consider a perturbed linear boundary-value problem for a weakly singular integral equation. Assume that the generating boundary-value problem is unsolvable for arbitrary inhomogeneities. Efficient conditions for the coefficients guaranteeing the appearance of the family of solutions of the perturbed linear boundary-value problem in the form of Laurent series in powers of a small parameter $ \varepsilon $ with singularity at the point $ \varepsilon = 0 $ are established.

Citation: Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021094
References:
[1]

P. L. Auer and C. S. Gardner, Note on singular integral equations of the Kirkwood–Riseman type, J. Chem. Phys., 23 (1955), 1545-1546.  doi: 10.1063/1.1742352.  Google Scholar

[2]

A. Boichuk, J. Diblík, D. Khusainov and M. Růžičková, Boundary-value problems for weakly nonlinear delay differential systems, Abstr. Appl. Anal., 2011 (2011), Art. ID 631412, 19 pp. doi: 10.1155/2011/631412.  Google Scholar

[3]

O. A. Boichuk and V. A. Feruk, Linear boundary-value problems for weakly singular integral equations, J. Math. Sci., 247 (2020), 248-257.  doi: 10.1007/s10958-020-04800-6.  Google Scholar

[4]

A. A. BoichukI. A. Korostil and M. Fečkan, Bifurcation conditions for a solution of an abstract wave equation, Differential Equations, 43 (2007), 495-502.  doi: 10.1134/S0012266107040076.  Google Scholar

[5]

O. A. BoichukN. O. Kozlova and V. A. Feruk, Weakly perturbed integral equations, J. Math. Sci., 223 (2017), 199-209.  doi: 10.1007/s10958-017-3348-x.  Google Scholar

[6]

A. A. BoichukN. A. Kozlova and V. A. Feruk, Weakly nonlinear integral equations of the Hammerstein type, Nonlin. Dynam. Syst. Theory, 19 (2019), 289-301.   Google Scholar

[7]

A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, 2$^nd$ edition, Walter de Gruyter, Berlin, Boston, 2016. doi: 10.1515/9783110378443.  Google Scholar

[8]

A. A. Boichuk and V. F. Zhuravlev, Solvability criterion for integro-differential equations with degenerate kernel in Banach spaces, Nonlin. Dynam. Syst. Theory, 18 (2018), 331-341.   Google Scholar

[9]

C. Constanda and S. Potapenko (eds.), Integral Methods in Science and Engineering. Techniques and Applications, Birkhäuser, Boston, 2008. doi: 10.1007/978-0-8176-4671-4.  Google Scholar

[10]

E. A. GalperinE. J. KansaA. Makroglou and S. A. Nelson, Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations, J. Comput. Appl. Math., 115 (2000), 193-211.  doi: 10.1016/S0377-0427(99)00297-6.  Google Scholar

[11]

I. Golovatska, Weakly perturbed boundary-value problems for systems of integro-differential equations, Tatra Mt. Math. Publ., 54 (2013), 61-71.  doi: 10.2478/tmmp-2013-0005.  Google Scholar

[12]

O. Gonzalez and J. Li, A convergence theorem for a class of Nystrom methods for weakly singular integral equations on surfaces in $\mathbb{R}^{3}$, Math. Comp., 84 (2015), 675-714.  doi: 10.1090/S0025-5718-2014-02869-X.  Google Scholar

[13]

E. Goursat, A Course in Mathematical Analysis. Vol. III. Part 2, Dover Publications, Inc., New York, 1964.  Google Scholar

[14]

I. G. Graham, Galerkin methods for second kind integral equations with singularities, Math. Comp., 39 (1982), 519-533.  doi: 10.1090/S0025-5718-1982-0669644-3.  Google Scholar

[15]

E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods in the Analysis of Nonlinear Systems, Nauka, Moscow, 1979.  Google Scholar

[16]

D. Hilbert, Selected Works, Vol. 2, Faktorial, Moscow, 1998. Google Scholar

[17]

C. HuangT. Tang and Z. Zhang, Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions, J. Comput. Math., 29 (2011), 698-719.  doi: 10.4208/jcm.1110-m11si06.  Google Scholar

[18]

S. G. Krein, Linear Equations in Banach Spaces, Nauka, Moscow, 1971.  Google Scholar

[19]

I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations, Gos. Izdt. Tekh.-Teor. Lit., Moscow, 1956.  Google Scholar

[20]

S. G. Mikhlin, Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology, 2$^{nd}$ edition, Pergamon, New York, 1964.  Google Scholar

[21]

G. R. Richter, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl., 55 (1976), 32-42.  doi: 10.1016/0022-247X(76)90275-4.  Google Scholar

[22]

A. SamoilenkoA. Boichuk and S. Chuiko, Hybrid difference-differential boundary-value problem, Miskolc Mathematical Notes, 18 (2017), 1015-1031.  doi: 10.18514/MMN.2017.2280.  Google Scholar

[23]

C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory, 2 (1979), 62-68.  doi: 10.1007/BF01729361.  Google Scholar

[24]

J. ShenC. Sheng and Z. Wang, Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels, J. Math. Study, 48 (2015), 315-329.  doi: 10.4208/jms.v48n4.15.01.  Google Scholar

[25]

V. I. Smirnov, A Course of Higher Mathematics. Vol. IV. Part 1, Nauka, Moscow, 1974.  Google Scholar

[26]

E. Vainikko and G. Vainikko, A spline product quasi-interpolation method for weakly singular Fredholm integral equations, SIAM J. Numer. Anal., 46 (2008), 1799-1820.  doi: 10.1137/070693308.  Google Scholar

[27]

M. I. Vishik and L. A. Lyusternik, Solution of some perturbation problems in the case of matrices and self-adjoint or nonself-adjoint differential equations. I, Russ. Math. Surveys, 15 (1960), 1-73.  doi: 10.1070/RM1960v015n03ABEH004092.  Google Scholar

[28]

V. F. Zhuravlev and N. P. Fomin, Weakly perturbed boundary-value problems for the Fredholm integral equations with degenerate kernel in Banach spaces, J. Math. Sci., 238 (2019), 248-262.  doi: 10.1007/s10958-019-04233-w.  Google Scholar

show all references

References:
[1]

P. L. Auer and C. S. Gardner, Note on singular integral equations of the Kirkwood–Riseman type, J. Chem. Phys., 23 (1955), 1545-1546.  doi: 10.1063/1.1742352.  Google Scholar

[2]

A. Boichuk, J. Diblík, D. Khusainov and M. Růžičková, Boundary-value problems for weakly nonlinear delay differential systems, Abstr. Appl. Anal., 2011 (2011), Art. ID 631412, 19 pp. doi: 10.1155/2011/631412.  Google Scholar

[3]

O. A. Boichuk and V. A. Feruk, Linear boundary-value problems for weakly singular integral equations, J. Math. Sci., 247 (2020), 248-257.  doi: 10.1007/s10958-020-04800-6.  Google Scholar

[4]

A. A. BoichukI. A. Korostil and M. Fečkan, Bifurcation conditions for a solution of an abstract wave equation, Differential Equations, 43 (2007), 495-502.  doi: 10.1134/S0012266107040076.  Google Scholar

[5]

O. A. BoichukN. O. Kozlova and V. A. Feruk, Weakly perturbed integral equations, J. Math. Sci., 223 (2017), 199-209.  doi: 10.1007/s10958-017-3348-x.  Google Scholar

[6]

A. A. BoichukN. A. Kozlova and V. A. Feruk, Weakly nonlinear integral equations of the Hammerstein type, Nonlin. Dynam. Syst. Theory, 19 (2019), 289-301.   Google Scholar

[7]

A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, 2$^nd$ edition, Walter de Gruyter, Berlin, Boston, 2016. doi: 10.1515/9783110378443.  Google Scholar

[8]

A. A. Boichuk and V. F. Zhuravlev, Solvability criterion for integro-differential equations with degenerate kernel in Banach spaces, Nonlin. Dynam. Syst. Theory, 18 (2018), 331-341.   Google Scholar

[9]

C. Constanda and S. Potapenko (eds.), Integral Methods in Science and Engineering. Techniques and Applications, Birkhäuser, Boston, 2008. doi: 10.1007/978-0-8176-4671-4.  Google Scholar

[10]

E. A. GalperinE. J. KansaA. Makroglou and S. A. Nelson, Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations, J. Comput. Appl. Math., 115 (2000), 193-211.  doi: 10.1016/S0377-0427(99)00297-6.  Google Scholar

[11]

I. Golovatska, Weakly perturbed boundary-value problems for systems of integro-differential equations, Tatra Mt. Math. Publ., 54 (2013), 61-71.  doi: 10.2478/tmmp-2013-0005.  Google Scholar

[12]

O. Gonzalez and J. Li, A convergence theorem for a class of Nystrom methods for weakly singular integral equations on surfaces in $\mathbb{R}^{3}$, Math. Comp., 84 (2015), 675-714.  doi: 10.1090/S0025-5718-2014-02869-X.  Google Scholar

[13]

E. Goursat, A Course in Mathematical Analysis. Vol. III. Part 2, Dover Publications, Inc., New York, 1964.  Google Scholar

[14]

I. G. Graham, Galerkin methods for second kind integral equations with singularities, Math. Comp., 39 (1982), 519-533.  doi: 10.1090/S0025-5718-1982-0669644-3.  Google Scholar

[15]

E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods in the Analysis of Nonlinear Systems, Nauka, Moscow, 1979.  Google Scholar

[16]

D. Hilbert, Selected Works, Vol. 2, Faktorial, Moscow, 1998. Google Scholar

[17]

C. HuangT. Tang and Z. Zhang, Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions, J. Comput. Math., 29 (2011), 698-719.  doi: 10.4208/jcm.1110-m11si06.  Google Scholar

[18]

S. G. Krein, Linear Equations in Banach Spaces, Nauka, Moscow, 1971.  Google Scholar

[19]

I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations, Gos. Izdt. Tekh.-Teor. Lit., Moscow, 1956.  Google Scholar

[20]

S. G. Mikhlin, Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology, 2$^{nd}$ edition, Pergamon, New York, 1964.  Google Scholar

[21]

G. R. Richter, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl., 55 (1976), 32-42.  doi: 10.1016/0022-247X(76)90275-4.  Google Scholar

[22]

A. SamoilenkoA. Boichuk and S. Chuiko, Hybrid difference-differential boundary-value problem, Miskolc Mathematical Notes, 18 (2017), 1015-1031.  doi: 10.18514/MMN.2017.2280.  Google Scholar

[23]

C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory, 2 (1979), 62-68.  doi: 10.1007/BF01729361.  Google Scholar

[24]

J. ShenC. Sheng and Z. Wang, Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels, J. Math. Study, 48 (2015), 315-329.  doi: 10.4208/jms.v48n4.15.01.  Google Scholar

[25]

V. I. Smirnov, A Course of Higher Mathematics. Vol. IV. Part 1, Nauka, Moscow, 1974.  Google Scholar

[26]

E. Vainikko and G. Vainikko, A spline product quasi-interpolation method for weakly singular Fredholm integral equations, SIAM J. Numer. Anal., 46 (2008), 1799-1820.  doi: 10.1137/070693308.  Google Scholar

[27]

M. I. Vishik and L. A. Lyusternik, Solution of some perturbation problems in the case of matrices and self-adjoint or nonself-adjoint differential equations. I, Russ. Math. Surveys, 15 (1960), 1-73.  doi: 10.1070/RM1960v015n03ABEH004092.  Google Scholar

[28]

V. F. Zhuravlev and N. P. Fomin, Weakly perturbed boundary-value problems for the Fredholm integral equations with degenerate kernel in Banach spaces, J. Math. Sci., 238 (2019), 248-262.  doi: 10.1007/s10958-019-04233-w.  Google Scholar

[1]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[2]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[3]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[7]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[8]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[9]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[10]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[11]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[12]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[13]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[14]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[17]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[18]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[20]

Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (21)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]