• Previous Article
    Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two
  • DCDS-B Home
  • This Issue
  • Next Article
    Periodicity and stability analysis of impulsive neural network models with generalized piecewise constant delays
doi: 10.3934/dcdsb.2021095

Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension

1. 

School of Science, Chang'an University, Xi'an 710064, China

2. 

School of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, China

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

* Corresponding author: Yongli Cai

Received  May 2020 Revised  December 2020 Published  March 2021

Fund Project: The authors thank all referees for their careful reading and valuable feedback leading to an improvement of this paper. This research of Q. Cao was supported by the Fundamental Research Funds for the Central Universities (300102120103). This research of Y. Cai was supported by the National Science Foundation of China (No. 61672013 and 12071173)

Resorting to M.G. Crandall and P.H. Rabinowitz's well-known bifurcation theory we first obtain the local structure of steady states concerning the ratio–dependent predator–prey system with prey-taxis in spatial one dimension, which bifurcate from the homogeneous coexistence steady states when treating the prey–tactic coefficient as a bifurcation parameter. Based on this, then the global structure of positive solution is established. Moreover, through asymptotic analysis and eigenvalue perturbation we find the stability criterion of such bifurcating steady states. Finally, several numerical simulations are performed to show the pattern formation.

Citation: Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021095
References:
[1]

B. AinsebaM. Bendahmane and A. Noussair, A reaction–diffusion system modeling predator–prey with prey-taxis, Nonlinear Analysis: Real World Applications, 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[4]

R. ArditiL. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent predation models, The American Naturalist, 138 (1991), 1287-1296.   Google Scholar

[5]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM Journal on Mathematical Analysis, 17 (1986), 1339-1353.  doi: 10.1137/0517094.  Google Scholar

[6]

Y. Cai, Q. Cao and Z.-A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicable Analysis, 2020, 1–19. doi: 10.1080/00036811.2020.1728259.  Google Scholar

[7]

A. ChakrabortyM. SinghD. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Mathematical and Computer Modelling, 46 (2007), 482-498.  doi: 10.1016/j.mcm.2006.10.010.  Google Scholar

[8]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 56 (1999), 65-75.   Google Scholar

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Archive for Rational Mechanics and Analysis, 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[11]

D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, The American Naturalist, 151 (1998), 97-113.  doi: 10.1086/286105.  Google Scholar

[12]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Applied Mathematics Letters, 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[13]

M. Hui Wang and Mark Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171 (2001), 83-97.  doi: 10.1016/S0025-5564(01)00048-7.  Google Scholar

[14]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel–Epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[15]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, Journal of Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[16]

H.-Y. Jin and Z.-A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European Journal of Applied Mathematics, (2020). Google Scholar

[17]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[18]

J. M. LeeT. Hillen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bulletin of Mathematical Biology, 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.  Google Scholar

[19]

J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, Journal of Biological Dynamics, 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[20]

C. LiX. Wang and Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Analysis: Theory, Methods & Applications, 97 (2014), 155-168.  doi: 10.1016/j.na.2013.11.022.  Google Scholar

[21]

M. MaC. Ou and Z.-A. Wang, Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM Journal on Applied Mathematics, 72 (2012), 740-766.  doi: 10.1137/110843964.  Google Scholar

[22]

M. Ma and Z.-A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28 (2015), 2639-2660.  doi: 10.1088/0951-7715/28/8/2639.  Google Scholar

[23]

W. W. MurdochJ. Chesson and P. L. Chesson, Biological control in theory and practice, The American Naturalist, 125 (1985), 344-366.  doi: 10.1086/284347.  Google Scholar

[24]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[25]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[26]

N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162 (2003), 61-76.  doi: 10.1086/375297.  Google Scholar

[27]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, Journal of Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[28]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Analysis: Real World Applications, 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[29]

Q. WangY. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1-D prey-taxis systems, Journal of Nonlinear Science, 27 (2017), 71-97.  doi: 10.1007/s00332-016-9326-5.  Google Scholar

[30]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Mathematical Methods in the Applied Sciences, 38 (2015), 431-443.  doi: 10.1002/mma.3079.  Google Scholar

[31]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, Journal of Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.  Google Scholar

[32]

K. Yosida, Functional Analysis, 4th edition, Springer, Berlin, Heidelberg, 1974.  Google Scholar

show all references

References:
[1]

B. AinsebaM. Bendahmane and A. Noussair, A reaction–diffusion system modeling predator–prey with prey-taxis, Nonlinear Analysis: Real World Applications, 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[4]

R. ArditiL. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent predation models, The American Naturalist, 138 (1991), 1287-1296.   Google Scholar

[5]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM Journal on Mathematical Analysis, 17 (1986), 1339-1353.  doi: 10.1137/0517094.  Google Scholar

[6]

Y. Cai, Q. Cao and Z.-A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicable Analysis, 2020, 1–19. doi: 10.1080/00036811.2020.1728259.  Google Scholar

[7]

A. ChakrabortyM. SinghD. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Mathematical and Computer Modelling, 46 (2007), 482-498.  doi: 10.1016/j.mcm.2006.10.010.  Google Scholar

[8]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 56 (1999), 65-75.   Google Scholar

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Archive for Rational Mechanics and Analysis, 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[11]

D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, The American Naturalist, 151 (1998), 97-113.  doi: 10.1086/286105.  Google Scholar

[12]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Applied Mathematics Letters, 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[13]

M. Hui Wang and Mark Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171 (2001), 83-97.  doi: 10.1016/S0025-5564(01)00048-7.  Google Scholar

[14]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel–Epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[15]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, Journal of Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[16]

H.-Y. Jin and Z.-A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European Journal of Applied Mathematics, (2020). Google Scholar

[17]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[18]

J. M. LeeT. Hillen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bulletin of Mathematical Biology, 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.  Google Scholar

[19]

J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, Journal of Biological Dynamics, 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[20]

C. LiX. Wang and Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Analysis: Theory, Methods & Applications, 97 (2014), 155-168.  doi: 10.1016/j.na.2013.11.022.  Google Scholar

[21]

M. MaC. Ou and Z.-A. Wang, Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM Journal on Applied Mathematics, 72 (2012), 740-766.  doi: 10.1137/110843964.  Google Scholar

[22]

M. Ma and Z.-A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28 (2015), 2639-2660.  doi: 10.1088/0951-7715/28/8/2639.  Google Scholar

[23]

W. W. MurdochJ. Chesson and P. L. Chesson, Biological control in theory and practice, The American Naturalist, 125 (1985), 344-366.  doi: 10.1086/284347.  Google Scholar

[24]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[25]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[26]

N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162 (2003), 61-76.  doi: 10.1086/375297.  Google Scholar

[27]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, Journal of Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[28]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Analysis: Real World Applications, 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[29]

Q. WangY. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1-D prey-taxis systems, Journal of Nonlinear Science, 27 (2017), 71-97.  doi: 10.1007/s00332-016-9326-5.  Google Scholar

[30]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Mathematical Methods in the Applied Sciences, 38 (2015), 431-443.  doi: 10.1002/mma.3079.  Google Scholar

[31]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, Journal of Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.  Google Scholar

[32]

K. Yosida, Functional Analysis, 4th edition, Springer, Berlin, Heidelberg, 1974.  Google Scholar

Figure 1.  Pattern formation of system (6) where $ x\in(0,100) $ with grid number 1000 and $ t \in(0, 8000) $ with grid number 1000
[1]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[2]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[3]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[4]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[5]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021010

[6]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[7]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[8]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[9]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[12]

Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218

[13]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[14]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[15]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[16]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[17]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[18]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[19]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[20]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]