\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $

  • * Corresponding author: Hebai Chen

    * Corresponding author: Hebai Chen
Abstract / Introduction Full Text(HTML) Figure(12) / Table(1) Related Papers Cited by
  • The paper deals with the bifurcation diagram and all global phase portraits in the Poincaré disc of a nonsmooth van der Pol-Duffing oscillator with the form $ \dot{x} = y $, $ \dot{y} = a_1x+a_2x^3+b_1y+b_2|x|y $, where $ a_i, b_i $ are real and $ a_2b_2\neq0 $, $ i = 1, 2 $. The system is an equivariant system. When the sum of indices of equilibria is $ -1 $, i.e., $ a_2>0 $, it is proven that the bifurcation diagram includes one Hopf bifurcation surface, one pitchfork bifurcation surface and one heteroclinic bifurcation surface. Although the vector field is only $ C^1 $, we still obtain that the heteroclinic bifurcation surface is $ C^{\infty} $ and a generalized Hopf bifurcation occurs. Moreover, we also find that the heteroclinic bifurcation surface and the focus-node surface have exactly one intersection curve.

    Mathematics Subject Classification: 34C07, 34C23, 34C37, 34K18.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The slice $ \mu_3 = {\mu_3}^{(0)} $ of the bifurcation diagram and global phase portraits of system (1.3a)

    Figure 2.  The relative positions of $ HL $ and $ FN_1 $

    Figure 3.  Dynamical behaviors near $ D $

    Figure 4.  Dynamical behaviors near $ I_y $

    Figure 5.  Dynamical behaviors near saddles

    Figure 6.  The closed orbit $ \gamma $

    Figure 7.  Annular regions according the positions of $ A $ and $ B $

    Figure 8.  The changes of unstable and stable manifolds

    Figure 9.  Numerical phase portraits with three equilibria

    Figure 10.  Numerical phase portraits with one closed orbit surrounding a focus

    Figure 11.  Numerical phase portraits with one closed orbit surrounding an unidirectional node

    Figure 12.  Numerical phase portraits with one closed orbit surrounding a bidirectional node

    Table 1.  Properties of $ E_0 $, $ E_l $ and $ E_r $

    possibilities of $ (\mu_1, \mu_2) $types and stabilities
    $ \mu_1< 0 $, $ \mu_2<-2\sqrt{-\mu_1} $$ E_l $, $ E_r $ saddles; $ E_0 $ stable bidirectional node
    $ \mu_1< 0 $, $ \mu_2 = -2\sqrt{-\mu_1} $$ E_l $, $ E_r $ saddles; $ E_0 $ stable unidirectional node
    $ \mu_1< 0 $, $ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_l $, $ E_r $ saddles; $ E_0 $ stable rough focus
    $ \mu_1< 0 $, $ \mu_2 = 0 $$ E_l $, $ E_r $ saddles; $ E_0 $ stable weak focus
    $ \mu_1< 0 $, $ 0<\mu_2<2\sqrt{-\mu_1} $$ E_l $, $ E_r $ saddles; $ E_0 $ unstable rough focus
    $ \mu_1< 0 $, $ \mu_2 = 2\sqrt{-\mu_1} $$ E_l $, $ E_r $ saddles; $ E_0 $ unstable unidirectional node
    $ \mu_1< 0 $, $ \mu_2>2\sqrt{-\mu_1} $$ E_l $, $ E_r $ saddles; $ E_0 $ unstable bidirectional node
     | Show Table
    DownLoad: CSV
  • [1] M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124.  doi: 10.1007/BF00045435.
    [2] H. Chen and X. Chen, Dynamical analysis of a cubic Liénard system with global parameters, Nonlinearity, 28 (2015), 3535-3562.  doi: 10.1088/0951-7715/28/10/3535.
    [3] H. Chen and X. Chen, Dynamical analysis of a cubic Liénard system with global parameters: (II), Nonlinearity, 29 (2016), 1978-1826.  doi: 10.1088/0951-7715/29/6/1798.
    [4] H. Chen and X. Chen, Dynamical analysis of a cubic Liénard system with global parameters: (III), Nonlinearity, 33 (2020), 1443-1465.  doi: 10.1088/1361-6544/ab5e29.
    [5] H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.
    [6] H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.
    [7] H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted.
    [8] X. Chen and H. Chen, Complete bifurcation diagram and global phase portraits of Liénard differential equations of degree four, J. Math. Anal. Appl., 485 (2020), 123802, 12 pages. doi: 10.1016/j.jmaa.2019.123802.
    [9] S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Reprint of the 1994 original. Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511665639.
    [10] J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.
    [11] G. Dangelmayr and J. Guckenheimer, On a four parameter family of planar vector fields, Arch. Ration. Mech. An., 97 (1987), 321-352.  doi: 10.1007/BF00280410.
    [12] F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations, Nonlinearity, 9 (1996), 1489-1500.  doi: 10.1088/0951-7715/9/6/006.
    [13] F. Dumortier and C. Li, Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59.  doi: 10.1006/jdeq.1997.3291.
    [14] F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.
    [15] M. R. Haddara and P. Bennett, A study of the angle dependence of roll damping moment, Ocean Engng., 16 (1989), 411-427.  doi: 10.1016/0029-8018(89)90016-4.
    [16] J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing, Company, Huntington, New York, 1980.
    [17] C. Li and J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations, 252 (2012), 3142-3162.  doi: 10.1016/j.jde.2011.11.002.
    [18] A. LinsW. de Melo and C. C. Pugh, On Liénard's equation, Lecture Notes in Math., 597 (1977), 335-357.  doi: 10.1007/BFb0085364.
    [19] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics, Wiley Series in Nonlinear Science. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. doi: 10.1002/9783527617548.
    [20] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon, New York, 1964. doi: 10.1016/C2013-0-05338-8.
    [21] S. Smale, Dynamics retrospective: Great problems, attempts that failed. Nonlinear science: the next decade, Physica D, 51 (1991), 267-273.  doi: 10.1016/0167-2789(91)90238-5.
    [22] S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.
    [23] Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.
    [24] L. Yang and X. Zeng, An upper bound for the amplitude of limit cycles in Liénard systems with symmetry, J. Differential Equations, 258 (2015), 2701-2710. 
    [25] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.
  • 加载中

Figures(12)

Tables(1)

SHARE

Article Metrics

HTML views(1943) PDF downloads(352) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return