In this paper, a one-dimensional Keller-Segel system of parabolic-parabolic type which is defined on the bounded interval with the Dirichlet boundary condition is considered. Under the assumption that initial data is sufficiently small, a unique mild solution to the system is constructed and the continuity of solution for the initial data is shown, by using an argument of successive approximations.
Citation: |
[1] | S. Albeverio, Y. Yahagi and M. W. Yoshida, An explicit time asymptotics of a solution to Keller-Segel system on bounded interval, preprint. |
[2] | A. Aruchamy and J. Tyagi, Nonnegative solutions to time fractional Keller-Segel system, Math. Methods Appl. Sci, (2020), 1–19 (Online). |
[3] | X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Conti. Dyn. Syst., 35 (2015), 1891-1904. doi: 10.3934/dcds.2015.35.1891. |
[4] | J. A. Carrillo, J. Li and Z. A. Wang, Boundary spike-layer solutions of the singular Keller-Segel system: Existence and stability, Proc. London Math. Soc., (2020). |
[5] | L. Corrias, M. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, 257 (2014), 1840-1878. doi: 10.1016/j.jde.2014.05.019. |
[6] | G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 2014. |
[7] | E. D. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989. |
[8] | V. Georgiev and K. Taniguchi, Gradient estimates and their optimality for heat equation in an exterior domain, preprint, arXiv: 1710.00592 (2017). |
[9] | T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math.Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. |
[10] | Q. Hou and Z. A. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures Appl., 130 (2019), 251-287. doi: 10.1016/j.matpur.2019.01.008. |
[11] | Q. Q. Hou, C. J. Liu, Y. G. Wang and Z. A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: One dimensional case, SIAM J. Math. Anal., 50 (2018), 3058-3091. doi: 10.1137/17M112748X. |
[12] | E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. |
[13] | H. Kozono, Y. Sugiyama and T. Wachi, Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space, J. Differential Equations, 252 (2012), 1213-1228. doi: 10.1016/j.jde.2011.08.025. |
[14] | C. C. Lee, Z. A. Wang and W. Yang, Boundary-layer profile of a singularly perturbed non-local semi-linear problem arising in chemotaxis, Nonlinearity, 33 (2020), 5111-5141. |
[15] | Y. Miura, Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions, Discrete Conti. Dyn. Syst., 37 (2017), 1603-1630. |
[16] | K. Osaki and A. Yagi, Finite Dimensional Attractor for one-dimensional Keller-Segel Equations, Funkcial. Ekvac., 44 (2001), 441-469. |
[17] | M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, 1972. |
[18] | Y. Sugiyama and Y. Yahagi, Uniqueness and continuity of solution for the initial data in the scaling invariant class of degenerate Keller-Segel system, J. Evol. Equ., 11 (2011), 319-337. doi: 10.1007/s00028-010-0093-8. |
[19] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. |
[20] | M. Winkler, Small-Mass Solutions in the Two-Dimensional Keller–Segel System Coupled to the Navier–Stokes Equations, SIAM J. Math. Anal., 52 (2020), 2041-2080. |
[21] | Y. Yahagi, Construction of a unique mild solution of one-dimensional Keller-Segel systems with uniformly elliptic operators having variable coefficients, Math. Slovaca, 68 (2018), 845-866. doi: 10.1515/ms-2017-0150. |
[22] | Y. Yahagi, Asymptotic behavior of solutions to the one-dimensional Keller-Segel system with small chemotaxis, Tokyo J. Math., 41 (2018), 175-191. doi: 10.3836/tjm/1502179267. |