doi: 10.3934/dcdsb.2021099
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system

Department of Mathematical Informatics, Tokyo University of Information Sciences, 4-1 Onaridai, Wakaba-ku, Chiba, 265-8501 Japan

Received  October 2020 Revised  January 2021 Early access March 2021

Fund Project: The author is supported by JSPS KAKENHI Grant Number JP19K14558

In this paper, a one-dimensional Keller-Segel system of parabolic-parabolic type which is defined on the bounded interval with the Dirichlet boundary condition is considered. Under the assumption that initial data is sufficiently small, a unique mild solution to the system is constructed and the continuity of solution for the initial data is shown, by using an argument of successive approximations.

Citation: Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021099
References:
[1]

S. Albeverio, Y. Yahagi and M. W. Yoshida, An explicit time asymptotics of a solution to Keller-Segel system on bounded interval, preprint. Google Scholar

[2]

A. Aruchamy and J. Tyagi, Nonnegative solutions to time fractional Keller-Segel system, Math. Methods Appl. Sci, (2020), 1–19 (Online). Google Scholar

[3]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Conti. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[4]

J. A. Carrillo, J. Li and Z. A. Wang, Boundary spike-layer solutions of the singular Keller-Segel system: Existence and stability, Proc. London Math. Soc., (2020). Google Scholar

[5]

L. CorriasM. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, 257 (2014), 1840-1878.  doi: 10.1016/j.jde.2014.05.019.  Google Scholar

[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2$^nd$ edition, Cambridge University Press, 2014.   Google Scholar
[7] E. D. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.  doi: 10.1017/CBO9780511566158.  Google Scholar
[8]

V. Georgiev and K. Taniguchi, Gradient estimates and their optimality for heat equation in an exterior domain, preprint, arXiv: 1710.00592 (2017). Google Scholar

[9]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math.Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[10]

Q. Hou and Z. A. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures Appl., 130 (2019), 251-287.  doi: 10.1016/j.matpur.2019.01.008.  Google Scholar

[11]

Q. Q. HouC. J. LiuY. G. Wang and Z. A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: One dimensional case, SIAM J. Math. Anal., 50 (2018), 3058-3091.  doi: 10.1137/17M112748X.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

H. KozonoY. Sugiyama and T. Wachi, Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space, J. Differential Equations, 252 (2012), 1213-1228.  doi: 10.1016/j.jde.2011.08.025.  Google Scholar

[14]

C. C. LeeZ. A. Wang and W. Yang, Boundary-layer profile of a singularly perturbed non-local semi-linear problem arising in chemotaxis, Nonlinearity, 33 (2020), 5111-5141.   Google Scholar

[15]

Y. Miura, Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions, Discrete Conti. Dyn. Syst., 37 (2017), 1603-1630.   Google Scholar

[16]

K. Osaki and A. Yagi, Finite Dimensional Attractor for one-dimensional Keller-Segel Equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[17] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, 1972.   Google Scholar
[18]

Y. Sugiyama and Y. Yahagi, Uniqueness and continuity of solution for the initial data in the scaling invariant class of degenerate Keller-Segel system, J. Evol. Equ., 11 (2011), 319-337.  doi: 10.1007/s00028-010-0093-8.  Google Scholar

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[20]

M. Winkler, Small-Mass Solutions in the Two-Dimensional Keller–Segel System Coupled to the Navier–Stokes Equations, SIAM J. Math. Anal., 52 (2020), 2041-2080.   Google Scholar

[21]

Y. Yahagi, Construction of a unique mild solution of one-dimensional Keller-Segel systems with uniformly elliptic operators having variable coefficients, Math. Slovaca, 68 (2018), 845-866.  doi: 10.1515/ms-2017-0150.  Google Scholar

[22]

Y. Yahagi, Asymptotic behavior of solutions to the one-dimensional Keller-Segel system with small chemotaxis, Tokyo J. Math., 41 (2018), 175-191.  doi: 10.3836/tjm/1502179267.  Google Scholar

show all references

References:
[1]

S. Albeverio, Y. Yahagi and M. W. Yoshida, An explicit time asymptotics of a solution to Keller-Segel system on bounded interval, preprint. Google Scholar

[2]

A. Aruchamy and J. Tyagi, Nonnegative solutions to time fractional Keller-Segel system, Math. Methods Appl. Sci, (2020), 1–19 (Online). Google Scholar

[3]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Conti. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[4]

J. A. Carrillo, J. Li and Z. A. Wang, Boundary spike-layer solutions of the singular Keller-Segel system: Existence and stability, Proc. London Math. Soc., (2020). Google Scholar

[5]

L. CorriasM. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, 257 (2014), 1840-1878.  doi: 10.1016/j.jde.2014.05.019.  Google Scholar

[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2$^nd$ edition, Cambridge University Press, 2014.   Google Scholar
[7] E. D. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.  doi: 10.1017/CBO9780511566158.  Google Scholar
[8]

V. Georgiev and K. Taniguchi, Gradient estimates and their optimality for heat equation in an exterior domain, preprint, arXiv: 1710.00592 (2017). Google Scholar

[9]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math.Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[10]

Q. Hou and Z. A. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures Appl., 130 (2019), 251-287.  doi: 10.1016/j.matpur.2019.01.008.  Google Scholar

[11]

Q. Q. HouC. J. LiuY. G. Wang and Z. A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: One dimensional case, SIAM J. Math. Anal., 50 (2018), 3058-3091.  doi: 10.1137/17M112748X.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

H. KozonoY. Sugiyama and T. Wachi, Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space, J. Differential Equations, 252 (2012), 1213-1228.  doi: 10.1016/j.jde.2011.08.025.  Google Scholar

[14]

C. C. LeeZ. A. Wang and W. Yang, Boundary-layer profile of a singularly perturbed non-local semi-linear problem arising in chemotaxis, Nonlinearity, 33 (2020), 5111-5141.   Google Scholar

[15]

Y. Miura, Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions, Discrete Conti. Dyn. Syst., 37 (2017), 1603-1630.   Google Scholar

[16]

K. Osaki and A. Yagi, Finite Dimensional Attractor for one-dimensional Keller-Segel Equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[17] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, 1972.   Google Scholar
[18]

Y. Sugiyama and Y. Yahagi, Uniqueness and continuity of solution for the initial data in the scaling invariant class of degenerate Keller-Segel system, J. Evol. Equ., 11 (2011), 319-337.  doi: 10.1007/s00028-010-0093-8.  Google Scholar

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[20]

M. Winkler, Small-Mass Solutions in the Two-Dimensional Keller–Segel System Coupled to the Navier–Stokes Equations, SIAM J. Math. Anal., 52 (2020), 2041-2080.   Google Scholar

[21]

Y. Yahagi, Construction of a unique mild solution of one-dimensional Keller-Segel systems with uniformly elliptic operators having variable coefficients, Math. Slovaca, 68 (2018), 845-866.  doi: 10.1515/ms-2017-0150.  Google Scholar

[22]

Y. Yahagi, Asymptotic behavior of solutions to the one-dimensional Keller-Segel system with small chemotaxis, Tokyo J. Math., 41 (2018), 175-191.  doi: 10.3836/tjm/1502179267.  Google Scholar

[1]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic & Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[2]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[3]

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049

[4]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[5]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[6]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[7]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[8]

Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218

[9]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[10]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[11]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

[12]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[13]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[14]

Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020

[15]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[16]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[17]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012

[18]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[19]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[20]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

2020 Impact Factor: 1.327

Article outline

[Back to Top]