• Previous Article
    Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems
  • DCDS-B Home
  • This Issue
  • Next Article
    Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction
March  2022, 27(3): 1549-1589. doi: 10.3934/dcdsb.2021101

A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

2. 

School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China

* Corresponding author: Hebai Chen

Received  October 2020 Published  March 2022 Early access  March 2021

We continue to study the nonsmooth van der Pol-Duffing oscillator $ \dot{x} = y $, $ \dot{y} = a_1x+a_2x^3+b_1y+b_2|x|y $, where $ a_i, b_i $ are real and $ a_2b_2\neq0 $, $ i = 1, 2 $. Notice that the sum of indices of equilibria is $ -1 $ for $ a_2>0 $ and $ 1 $ for $ a_2<0 $. When $ a_2>0 $, the nonsmooth van der Pol-Duffing oscillator has been studied completely in the companion paper. Attention goes to the bifurcation diagram and all global phase portraits in the Poincaré disc of the nonsmooth van der Pol-Duffing oscillator for $ a_2<0 $ in this paper. The bifurcation diagram is more complex, which includes two Hopf bifurcation surfaces, one pitchfork bifurcation surface, one homoclinic bifurcation surface, one double limit cycle bifurcation surface and one bifurcation surface for equilibria at infinity. When $ b_2>0 $ is fixed, this nonsmooth van der Pol-Duffing oscillator cannot be changed into a near-Hamiltonian system for small $ a_1, b_1 $. Moreover, the global dynamics of the nonsmooth van der Pol-Duffing oscillator and the van der Pol-Duffing oscillator are different.

Citation: Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1549-1589. doi: 10.3934/dcdsb.2021101
References:
[1]

M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124. 

[2]

H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.

[3]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.

[4]

H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted.

[5] S.-N. ChowC. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.  doi: 10.1017/CBO9780511665639.
[6]

J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.

[7]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.

[8]

J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.

[9]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.

[10]

L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.

[11]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.

[12]

Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear.

[13]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.

show all references

References:
[1]

M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124. 

[2]

H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.

[3]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.

[4]

H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted.

[5] S.-N. ChowC. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.  doi: 10.1017/CBO9780511665639.
[6]

J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.

[7]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.

[8]

J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.

[9]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.

[10]

L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.

[11]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.

[12]

Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear.

[13]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.

Figure 1.  The slice $ \mu_3 = {\mu_3}^{(1)}<2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits
Figure 2.  The slice $ \mu_3 = {\mu_3}^{(2)}\ge2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits
Figure 3.  Two possibilities of connections in $ S_3 $
Figure 4.  An orbit near $ E_0 $
Figure 5.  Dynamical behaviors near $ I_y^+ $ and $ I_y^- $
Figure 6.  Dynamical behaviors near $ D $
Figure 7.  Dynamical behaviors near infinity
Figure 8.  The orbit $ \Upsilon $ passing through $ (x_*, y_*) $
Figure 9.  Hypothetical limit cycles
Figure 10.  Two large limit cycles
Figure 11.  Unstable manifold in the right half plane of the origin
Figure 12.  Existence of the large limit cycle
Figure 13.  $ P $ is not in the region enclosed by $ \Gamma $
Figure 14.  $ P $ is in the region enclosed by $ \Gamma $
Figure 15.  Unstable and stable manifolds in the right half plane
Figure 16.  Numerical phase portraits with one equilibrium when $ \mu_1 = -4 $ and $ \mu_3 = 1 $
Figure 17.  Numerical phase portraits with one equilibrium when $ \mu_1 = 0 $ and $ \mu_3 = 1 $
Figure 18.  Numerical phase portraits with three equilibrium when $ \mu_1 = 4 $ and $ \mu_3 = 1 $
Table 1.  Properties of $ E_0 $, $ E_l $ and $ E_r $
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
$ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
$ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
$ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
$ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
$ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
$ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
$ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
$ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
$ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
$ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
$ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
$ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
Table 2.  Properties of $ E_0 $
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_2<0 $$ E_0 $ stable degenerate node
$ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
$ \mu_2>0 $$ E_0 $ unstable degenerate node
$ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
$ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
$ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
$ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
$ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
$ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
$ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_2<0 $$ E_0 $ stable degenerate node
$ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
$ \mu_2>0 $$ E_0 $ unstable degenerate node
$ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
$ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
$ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
$ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
$ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
$ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
$ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
[1]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1421-1446. doi: 10.3934/dcdsb.2021096

[2]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[3]

Zhaosheng Feng. Duffing-van der Pol-type oscillator systems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1231-1257. doi: 10.3934/dcdss.2014.7.1231

[4]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[5]

Zhaosheng Feng, Guangyue Gao, Jing Cui. Duffing--van der Pol--type oscillator system and its first integrals. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1377-1391. doi: 10.3934/cpaa.2011.10.1377

[6]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[7]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[8]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[9]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[10]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[11]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[12]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[13]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[14]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[15]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[16]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[19]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[20]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (335)
  • HTML views (383)
  • Cited by (0)

Other articles
by authors

[Back to Top]