possibilities of | types and stabilities |
We continue to study the nonsmooth van der Pol-Duffing oscillator $ \dot{x} = y $, $ \dot{y} = a_1x+a_2x^3+b_1y+b_2|x|y $, where $ a_i, b_i $ are real and $ a_2b_2\neq0 $, $ i = 1, 2 $. Notice that the sum of indices of equilibria is $ -1 $ for $ a_2>0 $ and $ 1 $ for $ a_2<0 $. When $ a_2>0 $, the nonsmooth van der Pol-Duffing oscillator has been studied completely in the companion paper. Attention goes to the bifurcation diagram and all global phase portraits in the Poincaré disc of the nonsmooth van der Pol-Duffing oscillator for $ a_2<0 $ in this paper. The bifurcation diagram is more complex, which includes two Hopf bifurcation surfaces, one pitchfork bifurcation surface, one homoclinic bifurcation surface, one double limit cycle bifurcation surface and one bifurcation surface for equilibria at infinity. When $ b_2>0 $ is fixed, this nonsmooth van der Pol-Duffing oscillator cannot be changed into a near-Hamiltonian system for small $ a_1, b_1 $. Moreover, the global dynamics of the nonsmooth van der Pol-Duffing oscillator and the van der Pol-Duffing oscillator are different.
Citation: |
Table 1.
Properties of
possibilities of | types and stabilities |
Table 2.
Properties of
possibilities of | types and stabilities | |
[1] |
M. Bikdash, B. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124.
![]() |
[2] |
H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.
doi: 10.3934/dcdsb.2018130.![]() ![]() ![]() |
[3] |
H. Chen, X. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.
doi: 10.3934/dcdsb.2017062.![]() ![]() ![]() |
[4] |
H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted.
![]() |
[5] |
S.-N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.
![]() ![]() |
[6] |
J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.
doi: 10.5957/jsr.1978.22.3.178.![]() ![]() |
[7] |
F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.
doi: 10.1088/0951-7715/3/4/004.![]() ![]() ![]() |
[8] |
J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.
![]() ![]() |
[9] |
A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995
doi: 10.1002/9783527617548.![]() ![]() ![]() |
[10] |
L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002.
doi: 10.1007/978-1-4613-0003-8.![]() ![]() ![]() |
[11] |
Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.
doi: 10.1088/0951-7715/17/4/015.![]() ![]() ![]() |
[12] |
Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear.
![]() |
[13] |
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.
![]() ![]() |
The slice
The slice
Two possibilities of connections in
An orbit near
Dynamical behaviors near
Dynamical behaviors near
Dynamical behaviors near infinity
The orbit
Hypothetical limit cycles
Two large limit cycles
Unstable manifold in the right half plane of the origin
Existence of the large limit cycle
Unstable and stable manifolds in the right half plane
Numerical phase portraits with one equilibrium when
Numerical phase portraits with one equilibrium when
Numerical phase portraits with three equilibrium when