\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $

  • * Corresponding author: Hebai Chen

    * Corresponding author: Hebai Chen
Abstract / Introduction Full Text(HTML) Figure(18) / Table(2) Related Papers Cited by
  • We continue to study the nonsmooth van der Pol-Duffing oscillator $ \dot{x} = y $, $ \dot{y} = a_1x+a_2x^3+b_1y+b_2|x|y $, where $ a_i, b_i $ are real and $ a_2b_2\neq0 $, $ i = 1, 2 $. Notice that the sum of indices of equilibria is $ -1 $ for $ a_2>0 $ and $ 1 $ for $ a_2<0 $. When $ a_2>0 $, the nonsmooth van der Pol-Duffing oscillator has been studied completely in the companion paper. Attention goes to the bifurcation diagram and all global phase portraits in the Poincaré disc of the nonsmooth van der Pol-Duffing oscillator for $ a_2<0 $ in this paper. The bifurcation diagram is more complex, which includes two Hopf bifurcation surfaces, one pitchfork bifurcation surface, one homoclinic bifurcation surface, one double limit cycle bifurcation surface and one bifurcation surface for equilibria at infinity. When $ b_2>0 $ is fixed, this nonsmooth van der Pol-Duffing oscillator cannot be changed into a near-Hamiltonian system for small $ a_1, b_1 $. Moreover, the global dynamics of the nonsmooth van der Pol-Duffing oscillator and the van der Pol-Duffing oscillator are different.

    Mathematics Subject Classification: 34C07, 34C23, 34C37, 34K18.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The slice $ \mu_3 = {\mu_3}^{(1)}<2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits

    Figure 2.  The slice $ \mu_3 = {\mu_3}^{(2)}\ge2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits

    Figure 3.  Two possibilities of connections in $ S_3 $

    Figure 4.  An orbit near $ E_0 $

    Figure 5.  Dynamical behaviors near $ I_y^+ $ and $ I_y^- $

    Figure 6.  Dynamical behaviors near $ D $

    Figure 7.  Dynamical behaviors near infinity

    Figure 8.  The orbit $ \Upsilon $ passing through $ (x_*, y_*) $

    Figure 9.  Hypothetical limit cycles

    Figure 10.  Two large limit cycles

    Figure 11.  Unstable manifold in the right half plane of the origin

    Figure 12.  Existence of the large limit cycle

    Figure 13.  $ P $ is not in the region enclosed by $ \Gamma $

    Figure 14.  $ P $ is in the region enclosed by $ \Gamma $

    Figure 15.  Unstable and stable manifolds in the right half plane

    Figure 16.  Numerical phase portraits with one equilibrium when $ \mu_1 = -4 $ and $ \mu_3 = 1 $

    Figure 17.  Numerical phase portraits with one equilibrium when $ \mu_1 = 0 $ and $ \mu_3 = 1 $

    Figure 18.  Numerical phase portraits with three equilibrium when $ \mu_1 = 4 $ and $ \mu_3 = 1 $

    Table 1.  Properties of $ E_0 $, $ E_l $ and $ E_r $

    possibilities of $ (\mu_1, \mu_2) $types and stabilities
    $ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
    $ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
    $ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
    $ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
    $ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
    $ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
    $ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
     | Show Table
    DownLoad: CSV

    Table 2.  Properties of $ E_0 $

    possibilities of $ (\mu_1, \mu_2) $types and stabilities
    $ \mu_2<0 $$ E_0 $ stable degenerate node
    $ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
    $ \mu_2>0 $$ E_0 $ unstable degenerate node
    $ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
    $ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
    $ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
    $ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
    $ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
    $ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
    $ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
     | Show Table
    DownLoad: CSV
  • [1] M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124. 
    [2] H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.
    [3] H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.
    [4] H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted.
    [5] S.-N. ChowC. Li and  D. WangNormal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994. 
    [6] J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.
    [7] F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.
    [8] J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.
    [9] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.
    [10] L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.
    [11] Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.
    [12] Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear.
    [13] Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.
  • 加载中

Figures(18)

Tables(2)

SHARE

Article Metrics

HTML views(2104) PDF downloads(372) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return