doi: 10.3934/dcdsb.2021101

A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

2. 

School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China

* Corresponding author: Hebai Chen

Received  October 2020 Published  March 2021

We continue to study the nonsmooth van der Pol-Duffing oscillator $ \dot{x} = y $, $ \dot{y} = a_1x+a_2x^3+b_1y+b_2|x|y $, where $ a_i, b_i $ are real and $ a_2b_2\neq0 $, $ i = 1, 2 $. Notice that the sum of indices of equilibria is $ -1 $ for $ a_2>0 $ and $ 1 $ for $ a_2<0 $. When $ a_2>0 $, the nonsmooth van der Pol-Duffing oscillator has been studied completely in the companion paper. Attention goes to the bifurcation diagram and all global phase portraits in the Poincaré disc of the nonsmooth van der Pol-Duffing oscillator for $ a_2<0 $ in this paper. The bifurcation diagram is more complex, which includes two Hopf bifurcation surfaces, one pitchfork bifurcation surface, one homoclinic bifurcation surface, one double limit cycle bifurcation surface and one bifurcation surface for equilibria at infinity. When $ b_2>0 $ is fixed, this nonsmooth van der Pol-Duffing oscillator cannot be changed into a near-Hamiltonian system for small $ a_1, b_1 $. Moreover, the global dynamics of the nonsmooth van der Pol-Duffing oscillator and the van der Pol-Duffing oscillator are different.

Citation: Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021101
References:
[1]

M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124.   Google Scholar

[2]

H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.  Google Scholar

[3]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.  Google Scholar

[4]

H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted. Google Scholar

[5] S.-N. ChowC. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[6]

J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.  Google Scholar

[7]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.  Google Scholar

[8]

J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.  Google Scholar

[9]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.  Google Scholar

[10]

L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[11]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[12]

Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear. Google Scholar

[13]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.  Google Scholar

show all references

References:
[1]

M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124.   Google Scholar

[2]

H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.  Google Scholar

[3]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.  Google Scholar

[4]

H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted. Google Scholar

[5] S.-N. ChowC. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[6]

J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.  Google Scholar

[7]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.  Google Scholar

[8]

J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.  Google Scholar

[9]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.  Google Scholar

[10]

L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[11]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[12]

Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear. Google Scholar

[13]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.  Google Scholar

Figure 1.  The slice $ \mu_3 = {\mu_3}^{(1)}<2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits
Figure 2.  The slice $ \mu_3 = {\mu_3}^{(2)}\ge2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits
Figure 3.  Two possibilities of connections in $ S_3 $
Figure 4.  An orbit near $ E_0 $
Figure 5.  Dynamical behaviors near $ I_y^+ $ and $ I_y^- $
Figure 6.  Dynamical behaviors near $ D $
Figure 7.  Dynamical behaviors near infinity
Figure 8.  The orbit $ \Upsilon $ passing through $ (x_*, y_*) $
Figure 9.  Hypothetical limit cycles
Figure 10.  Two large limit cycles
Figure 11.  Unstable manifold in the right half plane of the origin
Figure 12.  Existence of the large limit cycle
Figure 13.  $ P $ is not in the region enclosed by $ \Gamma $
Figure 14.  $ P $ is in the region enclosed by $ \Gamma $
Figure 15.  Unstable and stable manifolds in the right half plane
Figure 16.  Numerical phase portraits with one equilibrium when $ \mu_1 = -4 $ and $ \mu_3 = 1 $
Figure 17.  Numerical phase portraits with one equilibrium when $ \mu_1 = 0 $ and $ \mu_3 = 1 $
Figure 18.  Numerical phase portraits with three equilibrium when $ \mu_1 = 4 $ and $ \mu_3 = 1 $
Table 1.  Properties of $ E_0 $, $ E_l $ and $ E_r $
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
$ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
$ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
$ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
$ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
$ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
$ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
$ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
$ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
$ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
$ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
$ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
$ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
Table 2.  Properties of $ E_0 $
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_2<0 $$ E_0 $ stable degenerate node
$ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
$ \mu_2>0 $$ E_0 $ unstable degenerate node
$ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
$ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
$ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
$ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
$ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
$ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
$ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_2<0 $$ E_0 $ stable degenerate node
$ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
$ \mu_2>0 $$ E_0 $ unstable degenerate node
$ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
$ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
$ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
$ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
$ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
$ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
$ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
[1]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[2]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[3]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[4]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[5]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[8]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[11]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[12]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[13]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[14]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[15]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[16]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[17]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[18]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[19]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[20]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]