\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

BMO type space associated with Neumann operator and application to a class of parabolic equations

Zhang Chao's work was supported by National Natural Science Foundation of China(Grant Nos. 11971431, 11401525), the Natural Science Foundation of Zhejiang Province (Grant No. LY18A010006) and the first Class Discipline of Zhejiang-A(Zhejiang Gongshang University- Statistics). Minghua Yang's work was supported by the National Natural Science Foundation of China (Grant No. 11801236), Postdoctoral Science Foundation of China (Grant Nos. 2020T130265, 2018M632593), Natural Science Foundation of Jiangxi Province (Grant No.20204BCJL23056), the Postdoctoral Science Foundation of Jiangxi Province (Grant No. 2017KY23) and Educational Commission Science Programm of Jiangxi Province (Grant No. GJJ190272)

Abstract Full Text(HTML) Related Papers Cited by
  • Let $ {\rm BMO}_{\Delta_{N}}(\mathbb{R}^{n}) $ denote a BMO space on $ \mathbb{R}^{n} $ associated to a Neumann operator $ \mathcal{L}: = -\Delta_{N} $. In this article we will show that a function $ f\in {\rm BMO}_{\Delta_{N}}(\mathbb{R}^{n}) $ is the trace of the solution of $ {\mathbb L}u = u_{t}+ \mathcal{L} u = 0, u(x, 0) = f(x), $ where $ u $ satisfies a Carleson-type condition

    $ \begin{eqnarray*} \sup\limits_{x_B, r_B} r_B^{-n}\int_0^{r_B^2}\int_{B(x_B, r_B)} \left\{t| \partial_t u(x, t) |^2+ | \nabla_x u(x, t) |^2 \right\}{dx dt } \leq C <\infty, \end{eqnarray*} $

    for some constant $ C>0 $. Conversely, this Carleson condition characterizes all the $ {\mathbb L} $-carolic functions whose traces belong to the space $ {\rm BMO}_{\Delta_{N}}(\mathbb{R}^{n}) $. Furthermore, based on the characterization of $ {\rm BMO}_{\Delta_{N}}(\mathbb{R}^{n}) $ mentioned above, we prove the global well-posedness for parabolic equations of Navier-Stokes type with the Neumann boundary condition under smallness condition on the intial data $ u_{0}\in {{\rm BMO}_{\Delta_{N}}^{-1}(\mathbb{R}^{n})} $.

    Mathematics Subject Classification: Primary: 42B35, 47F05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Auscher and D. Frey, On the Well-Posedness of parabolic equations of Navier-Stokes type with ${\rm {BMO}}^{-1}$ data, J. Inst. Math. Jussieu., 16 (2017), 947-985.  doi: 10.1017/S1474748015000158.
    [2] P. AuscherS. Monniaux and P. Portal, The maximal regularity operator on tent spaces, Commun. Pure Appl. Anal., 11 (2012), 2213-2219.  doi: 10.3934/cpaa.2012.11.2213.
    [3] P. Auscher and P. Tchamitchian., Square Root Problem for Divergence Operators and Related Topics, Ast$\acute{e}$risqueno., 249, 1998.
    [4] D. DengX. T. DuongA. Sikora and L. Yan, Comparison of the classical BMO with the BMO spaces associated with operators and applications, Rev. Mat. Iberoamericana., 24 (2008), 267-296.  doi: 10.4171/RMI/536.
    [5] M. Dindos, C. Kenig and J. Pipher, BMO solvability and the $A_{\infty}$ condition for elliptic operators, J. Geom. Anal., 21 (2011), 78-95. doi: 10.1007/s12220-010-9142-3.
    [6] Y. Du and K. Wang, Regularity of the solutions to the liquid crystal equations with small rough data, J. Differential Equations, 256 (2014), 65-81. doi: 10.1016/j.jde.2013.07.066.
    [7] X. T. DuongL. Yan and C. Zhang, On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal., 266 (2014), 2053-2085.  doi: 10.1016/j.jfa.2013.09.008.
    [8] X. T. Duong and L. Yan, New function spaces of $ {\rm{BMO}} $ type, the John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math., 58 (2005), 1375-1420.  doi: 10.1002/cpa.20080.
    [9] X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc., 18 (2005), 943-973.  doi: 10.1090/S0894-0347-05-00496-0.
    [10] E. B. Fabes, R. L. Johnson and U. Neri, Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $L_{p, \lambda}$, Indiana Univ. Math. J., 25 (1976), 159-170. doi: 10.1512/iumj.1976.25.25012.
    [11] E. B. Fabes and U. Neri, Characterization of temperatures with initial data in BMO, Duke Math. J., 42 (1975), 725-734. doi: 10.1215/S0012-7094-75-04260-X.
    [12] E. B. Fabes and U. Neri, Dirichlet problem in Lipschitz domains with BMO data, Proc. Amer. Math. Soc., 78 (1980), 33-39. doi: 10.1090/S0002-9939-1980-0548079-8.
    [13] C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137-193.  doi: 10.1007/BF02392215.
    [14] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Memoirs of the Amer. Math. Soc., 214 (2011), no. 1007. doi: 10.1090/S0065-9266-2011-00624-6.
    [15] R. Jiang, J. Xiao and D. Yang, Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants, Anal. Appl. (Singap.), 14 (2016), 679-703. doi: 10.1142/S0219530515500190.
    [16] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.
    [17] J. Li and B. D. Wick, Characterizations of $\rm H^{1}_{\Delta_{N}}(\mathbb{R}^{n})$ and $\rm BMO_{\Delta_{N}}(\mathbb{R}^{n})$ via weak factorizations and commutators, J. Funct. Anal., 272 (2017), 5384-5416.  doi: 10.1016/j.jfa.2017.03.007.
    [18] L. SongX. X. Tian and L. X. Yan, On characterization of Poisson integrals of Schrödinger operators with Morry traces, Acta Math. Sin. (Engl. Ser.), 34 (2018), 787-800.  doi: 10.1007/s10114-018-7368-3.
    [19] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, 63, Princeton Univ. Press, Princeton, N.J., 1970.
    [20] M. Yang and C. Zhang, Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces, to appear in Math. Nachr. arXiv: 1710.01160
    [21] W. Yuan, W. Sickel and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, 2005. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14606-0.
  • 加载中
SHARE

Article Metrics

HTML views(665) PDF downloads(354) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return