doi: 10.3934/dcdsb.2021106

Transitions and bifurcations of Darcy-Brinkman-Marangoni convection

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu, 610031, China

2. 

College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China

3. 

College of Mathematics, Sichuan University, Chengdu, 610065, China

* Corresponding author: Yiqiu Mao

Received  January 2021 Published  March 2021

Fund Project: This article is supported by National Science Foundation of China (NSFC) grant 11901408

This study examines dynamic transitions of Brinkman equation coupled with the thermal diffusion equation modeling the surface tension driven convection in porous media. First, we show that the equilibrium of the equation loses its linear stability if the Marangoni number is greater than a threshold, and the corresponding principle of exchange stability (PES) condition is then verified. Second, we establish the nonlinear transition theorems describing the possible transition types associated with the linear instability of the equilibrium by applying the center manifold theory to reduce the infinite dynamical system to a finite dimensional one together with several non-dimensional transition numbers. Finally, careful numerical computations are performed to determine the sign of these transition numbers as well as related transition types. Our result indicates that the system favors all three types of transitions. Unlike the buoyancy forces driven convections, jump and mixed type transition can occur at certain parameter regimes.

Citation: Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021106
References:
[1]

A. A. Abdullah and Z. Z. Rashed, Instability of the benard-marangoni convection in a porous layer affected by a non-vertical magnetic field, Journal of Applied Mechanics and Technical Physics, 59 (2018), 903-911.  doi: 10.1134/S0021894418050188.  Google Scholar

[2]

H. Bénard, Les tourbillons cellulaires dans une nappe liquide, Rev. Gen. Sci. Pures Appl., 11 (1900), 1261-1271.   Google Scholar

[3]

P. Colinet, J. C. Legros and M. G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities, vol. 527, WILEY-VCH Verlag Berlin GmbH, Berlin, 2001. doi: 10.1002/3527603115.  Google Scholar

[4]

P. C. DaubyG. LebonP. Colinet and J. C. Legros, Hexagonal marangoni convection in a rectangular box with slippery walls, The Quarterly Journal of Mechanics and Applied Mathematics, 46 (1993), 683-707.  doi: 10.1093/qjmam/46.4.683.  Google Scholar

[5]

T. Desaive, G. Lebon and M. Hennenberg, Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer, Physical Review E, 64 (2001), 066304. doi: 10.1103/PhysRevE.64.066304.  Google Scholar

[6]

H. A. Dijkstra, Pattern selection in surface tension driven flows, in Free Surface Flows, Springer, 1998,101-144.  Google Scholar

[7]

H. DijkstraT. Sengul and S. Wang, Dynamic transitions of surface tension driven convection, Physica D: Nonlinear Phenomena, 247 (2013), 7-17.  doi: 10.1016/j.physd.2012.12.008.  Google Scholar

[8]

D. HanM. Hernandez and Q. Wang, Dynamic bifurcation and transition in the {R}ayleigh-{B}énard enard convection with internal heating and varying gravity, Commun. Math. Sci., 17 (2019), 175-192.  doi: 10.4310/CMS.2019.v17.n1.a7.  Google Scholar

[9]

M. HennenbergM. Z. SaghirA. Rednikov and J. C. Legros, Porous media and the benard-marangoni problem, Transport in Porous Media, 27 (1997), 327-355.  doi: 10.1023/A:1006564129233.  Google Scholar

[10]

T. Ma and S. Wang, Dynamic bifurcation and stability in the rayleigh-benard convection, Communications in Mathematical Sciences, 2 (2004), 159-183.  doi: 10.4310/CMS.2004.v2.n2.a2.  Google Scholar

[11]

T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53, World Scientific, 2005. doi: 10.1142/9789812701152.  Google Scholar

[12]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[13]

Y. Mao, Z. Chen, C. Kieu and Q. Wang, On the stability and bifurcation of the non-rotating boussinesq equation with the kolmogorov forcing at a low péclet number, Communications in Nonlinear Science and Numerical Simulation, 89 (2020), 105322. doi: 10.1016/j.cnsns.2020.105322.  Google Scholar

[14]

D. A. Nield and A. Bejan, Convection in Porous Media, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3033-3.  Google Scholar

[15]

D. A. Nield, Modelling the effect of surface tension on the onset of natural convection in a saturated porous medium, Transport in Porous Media, 31 (1998), 365-368.  doi: 10.1023/A:1006598423126.  Google Scholar

[16]

W. B. PatbergA. KoersW. D. E. Steenge and A. A. H. Drinkenburg, Effectiveness of mass transfer in a packed distillation column in relation to surface tension gradients, Chemical Engineering Science, 38 (1983), 917-923.  doi: 10.1016/0009-2509(83)80013-X.  Google Scholar

[17]

B. A. RajuR. NandihalliC. Nanjundappa and I. Shivakumara, Buoyancy-surface tension driven forces on electro-thermal-convection in a rotating dielectric fluid-saturated porous layer: Effect of cubic temperature gradients, SN Applied Sciences, 2 (2020), 1-12.   Google Scholar

[18]

N. Rudraiah and V. Prasad, Effect of brinkman boundary layer on the onset of marangoni convection in a fluid-saturated porous layer, Acta Mechanica, 127 (1998), 235-246.  doi: 10.1007/BF01170376.  Google Scholar

[19]

M. Z. SaghirP. Comi and M. Mehrvar, Effects of interaction between rayleigh and marangoni convection in superposed fluid and porous layers, International Journal of Thermal Sciences, 41 (2002), 207-215.  doi: 10.1016/S1290-0729(01)01309-6.  Google Scholar

[20]

M. Z. SaghirM. Hennenberg and J. C. Legros, Marangoni convection in a square porous cavity, International Journal of Computational Fluid Dynamics, 9 (1998), 111-119.  doi: 10.1080/10618569808940845.  Google Scholar

[21]

M. Z. SaghirP. Mahendran and M. Hennenberg, Marangoni and gravity driven convection in a liquid layer overlying a porous layer: Lateral and bottom heating conditions, Energy Sources, 27 (2005), 151-171.  doi: 10.1080/00908310490448244.  Google Scholar

[22]

T. Sengul and S. Wang, Pattern formation in rayleigh-benard convection, Communication of Mathematical Sciences, 11 (2013), 315-343.  doi: 10.4310/CMS.2013.v11.n1.a10.  Google Scholar

[23]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, vol. 41, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[24]

I. S. ShivakumaraJ. LeeC. E. Nanjundappa and M. Ravisha, Brinkman-benard-marangoni convection in a magnetized ferrofluid saturated porous layer, International Journal of Heat and Mass Transfer, 53 (2010), 5835-5846.  doi: 10.1016/j.ijheatmasstransfer.2010.07.064.  Google Scholar

[25]

I. S. ShivakumaraC. E. Nanjundappa and K. B. Chavaraddi, Darcy-benard-marangoni convection in porous media, International Journal of Heat and Mass Transfer, 52 (2009), 2815-2823.  doi: 10.1016/j.ijheatmasstransfer.2008.09.038.  Google Scholar

[26]

B. Straughan, Surface-tension-driven convection in a fluid overlying a porous layer, Journal of Computational Physics, 170 (2001), 320-337.  doi: 10.1006/jcph.2001.6739.  Google Scholar

[27]

I. White and K. Perroux, Marangoni instabilities in porous media, in Convective Flows in Porous Media (eds. R. A. Wooding and I. White), DSIR Science Information Centre, Wellington, 1984, 99-111. Google Scholar

show all references

References:
[1]

A. A. Abdullah and Z. Z. Rashed, Instability of the benard-marangoni convection in a porous layer affected by a non-vertical magnetic field, Journal of Applied Mechanics and Technical Physics, 59 (2018), 903-911.  doi: 10.1134/S0021894418050188.  Google Scholar

[2]

H. Bénard, Les tourbillons cellulaires dans une nappe liquide, Rev. Gen. Sci. Pures Appl., 11 (1900), 1261-1271.   Google Scholar

[3]

P. Colinet, J. C. Legros and M. G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities, vol. 527, WILEY-VCH Verlag Berlin GmbH, Berlin, 2001. doi: 10.1002/3527603115.  Google Scholar

[4]

P. C. DaubyG. LebonP. Colinet and J. C. Legros, Hexagonal marangoni convection in a rectangular box with slippery walls, The Quarterly Journal of Mechanics and Applied Mathematics, 46 (1993), 683-707.  doi: 10.1093/qjmam/46.4.683.  Google Scholar

[5]

T. Desaive, G. Lebon and M. Hennenberg, Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer, Physical Review E, 64 (2001), 066304. doi: 10.1103/PhysRevE.64.066304.  Google Scholar

[6]

H. A. Dijkstra, Pattern selection in surface tension driven flows, in Free Surface Flows, Springer, 1998,101-144.  Google Scholar

[7]

H. DijkstraT. Sengul and S. Wang, Dynamic transitions of surface tension driven convection, Physica D: Nonlinear Phenomena, 247 (2013), 7-17.  doi: 10.1016/j.physd.2012.12.008.  Google Scholar

[8]

D. HanM. Hernandez and Q. Wang, Dynamic bifurcation and transition in the {R}ayleigh-{B}énard enard convection with internal heating and varying gravity, Commun. Math. Sci., 17 (2019), 175-192.  doi: 10.4310/CMS.2019.v17.n1.a7.  Google Scholar

[9]

M. HennenbergM. Z. SaghirA. Rednikov and J. C. Legros, Porous media and the benard-marangoni problem, Transport in Porous Media, 27 (1997), 327-355.  doi: 10.1023/A:1006564129233.  Google Scholar

[10]

T. Ma and S. Wang, Dynamic bifurcation and stability in the rayleigh-benard convection, Communications in Mathematical Sciences, 2 (2004), 159-183.  doi: 10.4310/CMS.2004.v2.n2.a2.  Google Scholar

[11]

T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53, World Scientific, 2005. doi: 10.1142/9789812701152.  Google Scholar

[12]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[13]

Y. Mao, Z. Chen, C. Kieu and Q. Wang, On the stability and bifurcation of the non-rotating boussinesq equation with the kolmogorov forcing at a low péclet number, Communications in Nonlinear Science and Numerical Simulation, 89 (2020), 105322. doi: 10.1016/j.cnsns.2020.105322.  Google Scholar

[14]

D. A. Nield and A. Bejan, Convection in Porous Media, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3033-3.  Google Scholar

[15]

D. A. Nield, Modelling the effect of surface tension on the onset of natural convection in a saturated porous medium, Transport in Porous Media, 31 (1998), 365-368.  doi: 10.1023/A:1006598423126.  Google Scholar

[16]

W. B. PatbergA. KoersW. D. E. Steenge and A. A. H. Drinkenburg, Effectiveness of mass transfer in a packed distillation column in relation to surface tension gradients, Chemical Engineering Science, 38 (1983), 917-923.  doi: 10.1016/0009-2509(83)80013-X.  Google Scholar

[17]

B. A. RajuR. NandihalliC. Nanjundappa and I. Shivakumara, Buoyancy-surface tension driven forces on electro-thermal-convection in a rotating dielectric fluid-saturated porous layer: Effect of cubic temperature gradients, SN Applied Sciences, 2 (2020), 1-12.   Google Scholar

[18]

N. Rudraiah and V. Prasad, Effect of brinkman boundary layer on the onset of marangoni convection in a fluid-saturated porous layer, Acta Mechanica, 127 (1998), 235-246.  doi: 10.1007/BF01170376.  Google Scholar

[19]

M. Z. SaghirP. Comi and M. Mehrvar, Effects of interaction between rayleigh and marangoni convection in superposed fluid and porous layers, International Journal of Thermal Sciences, 41 (2002), 207-215.  doi: 10.1016/S1290-0729(01)01309-6.  Google Scholar

[20]

M. Z. SaghirM. Hennenberg and J. C. Legros, Marangoni convection in a square porous cavity, International Journal of Computational Fluid Dynamics, 9 (1998), 111-119.  doi: 10.1080/10618569808940845.  Google Scholar

[21]

M. Z. SaghirP. Mahendran and M. Hennenberg, Marangoni and gravity driven convection in a liquid layer overlying a porous layer: Lateral and bottom heating conditions, Energy Sources, 27 (2005), 151-171.  doi: 10.1080/00908310490448244.  Google Scholar

[22]

T. Sengul and S. Wang, Pattern formation in rayleigh-benard convection, Communication of Mathematical Sciences, 11 (2013), 315-343.  doi: 10.4310/CMS.2013.v11.n1.a10.  Google Scholar

[23]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, vol. 41, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[24]

I. S. ShivakumaraJ. LeeC. E. Nanjundappa and M. Ravisha, Brinkman-benard-marangoni convection in a magnetized ferrofluid saturated porous layer, International Journal of Heat and Mass Transfer, 53 (2010), 5835-5846.  doi: 10.1016/j.ijheatmasstransfer.2010.07.064.  Google Scholar

[25]

I. S. ShivakumaraC. E. Nanjundappa and K. B. Chavaraddi, Darcy-benard-marangoni convection in porous media, International Journal of Heat and Mass Transfer, 52 (2009), 2815-2823.  doi: 10.1016/j.ijheatmasstransfer.2008.09.038.  Google Scholar

[26]

B. Straughan, Surface-tension-driven convection in a fluid overlying a porous layer, Journal of Computational Physics, 170 (2001), 320-337.  doi: 10.1006/jcph.2001.6739.  Google Scholar

[27]

I. White and K. Perroux, Marangoni instabilities in porous media, in Convective Flows in Porous Media (eds. R. A. Wooding and I. White), DSIR Science Information Centre, Wellington, 1984, 99-111. Google Scholar

Figure 1.  Plot of critical porous Marangoni number $ \text{Ma}^* $ as a function of $ a\in[3, 5] $ and $ b\in[3, 5] $ with $ \text{Bi} = 2 $ (left) and $ \text{Bi} = 10 $ (right) and $ \text{Da} = 0.1 $
Figure 2.  Plot of $ (m_c, n_c) $ as a function of $ a\in[3, 4] $ and $ b\in[3, 4] $ such that $ Ma^* = \mathcal{M}(m_c, n_c) $, where $ \text{Bi} = 2 $ and $ \text{Da} = 0.1 $
Table 1.  Comparison between exact values of Marangoni number and numerical predictions, where $ \text{Bi} = 2 $, $ \text{Da} = 0.1 $, and $ \lambda = 1000 $
$ a, b $ Exact $ Ma^* $ Numerical prediction Relative error
$ a=3, b=3 $ 209.82420647 209.82420611 $ 3.6\times 10^{-7} $
$ a=3.2, b=3.2 $ 210.25798681 210.25798320 $ 3.6\times 10^{-6} $
$ a=3.4, b=3.4 $ 208.54692216 208.54692182 $ 3.4\times 10^{-7} $
$ a=3.6, b=3.6 $ 208.51417969 208.51417509 $ 4.6\times 10^{-6} $
$ a, b $ Exact $ Ma^* $ Numerical prediction Relative error
$ a=3, b=3 $ 209.82420647 209.82420611 $ 3.6\times 10^{-7} $
$ a=3.2, b=3.2 $ 210.25798681 210.25798320 $ 3.6\times 10^{-6} $
$ a=3.4, b=3.4 $ 208.54692216 208.54692182 $ 3.4\times 10^{-7} $
$ a=3.6, b=3.6 $ 208.51417969 208.51417509 $ 4.6\times 10^{-6} $
Table 2.  Numerical predictions of the sign of the transition number $ r $, where $ \text{Bi} = 2 $, $ \text{Da} = 0.1 $, and $ \lambda = 1000 $
$ a, \; b $ $ (m_c, n_c) $ sign$ (r) $
$ a=3.3, \; b=3.3 $ $ (3, 1) $ $ 1 $
$ a=3.35, \; b=3.3 $ $ (3, 1) $ $ 1 $
$ a=3.4, b=3.3 $ $ (1, 3) $ $ -1 $
$ a=3.45, \; b=3.3 $ $ (1, 3) $ $ -1 $
$ a, \; b $ $ (m_c, n_c) $ sign$ (r) $
$ a=3.3, \; b=3.3 $ $ (3, 1) $ $ 1 $
$ a=3.35, \; b=3.3 $ $ (3, 1) $ $ 1 $
$ a=3.4, b=3.3 $ $ (1, 3) $ $ -1 $
$ a=3.45, \; b=3.3 $ $ (1, 3) $ $ -1 $
Table 3.  Numerical predictions of the sign of the transition number $ r $, where $ \text{Bi} = 2 $, $ \text{Da} = 0.1 $, and $ \lambda = 1000 $
$ a, b $ $ (m_c, n_c) $ sign$ (r) $
$ a=3.4, b=3.75 $ $ (0, 3) $ $ -1 $
$ a=3.45, b=3.75 $ $ (0, 3) $ $ -1 $
$ a=3.5, b=3.75 $ $ (0, 3) $ $ -1 $
$ a=3.55, b=3.75 $ $ (0, 3) $ $ -1 $
$ a, b $ $ (m_c, n_c) $ sign$ (r) $
$ a=3.4, b=3.75 $ $ (0, 3) $ $ -1 $
$ a=3.45, b=3.75 $ $ (0, 3) $ $ -1 $
$ a=3.5, b=3.75 $ $ (0, 3) $ $ -1 $
$ a=3.55, b=3.75 $ $ (0, 3) $ $ -1 $
Table 4.  Numerical predictions of the sign of the transition numbers $ r_1 $ and $ S_2 $, where $ \text{Bi} = 2 $, $ \text{Da} = 0.1 $, and $ \lambda = 1000 $
$ a, b $ $ (m_c, n_c) $ sign$ (r_1) $ sign$ (s_2) $
$ a=1.4300024, b=2.47683688 $ $ (1, 1), (0, 2) $ $ 1 $ $ 1 $
$ a=1.4300024, b= 4.95367376 $ $ (1, 2), (0, 4) $ $ 1 $ $ 1 $
$ a, b $ $ (m_c, n_c) $ sign$ (r_1) $ sign$ (s_2) $
$ a=1.4300024, b=2.47683688 $ $ (1, 1), (0, 2) $ $ 1 $ $ 1 $
$ a=1.4300024, b= 4.95367376 $ $ (1, 2), (0, 4) $ $ 1 $ $ 1 $
Table 5.  Numerical predictions of the sign of the transition numbers $ r_1 $ and $ S_2 $, where $ \text{Bi} = 10 $, $ \text{Da} = 0.1 $, and $ \lambda = 1000 $
$ a, b $ $ (m_c, n_c) $ sign$ (r_1) $ sign$ (s_2) $
$ a=1.21836059, b= 2.11026245 $ $ (1, 1), (0, 2) $ $ 1 $ $ -1 $
$ a=1.21836059, b= 4.2205249 $ $ (1, 2), (0, 4) $ $ 1 $ $ -1 $
$ a, b $ $ (m_c, n_c) $ sign$ (r_1) $ sign$ (s_2) $
$ a=1.21836059, b= 2.11026245 $ $ (1, 1), (0, 2) $ $ 1 $ $ -1 $
$ a=1.21836059, b= 4.2205249 $ $ (1, 2), (0, 4) $ $ 1 $ $ -1 $
[1]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[2]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[3]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[4]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[5]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[6]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[7]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[8]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[9]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[10]

Chris Guiver, Nathan Poppelreiter, Richard Rebarber, Brigitte Tenhumberg, Stuart Townley. Dynamic observers for unknown populations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3279-3302. doi: 10.3934/dcdsb.2020232

[11]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[12]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[13]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[14]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[15]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[16]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[17]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[18]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[19]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[20]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]