doi: 10.3934/dcdsb.2021109

A switching feedback control approach for persistence of managed resources

1. 

Departamento de Matemática Aplicada, E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia (UNED), c/Juan del Rosal 12, 28040, Madrid, Spain

2. 

School of Engineering & the Built Environment, Edinburgh Napier University, Merchiston Campus, 10 Colinton Road, Edinburgh EH10 5DT, UK

3. 

Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

4. 

Environment and Sustainability Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK

* Corresponding author: Chris Guiver

Received  August 2020 Revised  March 2021 Early access  April 2021

An adaptive switching feedback control scheme is proposed for classes of discrete-time, positive difference equations, or systems of equations. In overview, the objective is to choose a control strategy which ensures persistence of the state, consequently avoiding zero which corresponds to absence or extinction. A robust feedback control solution is proposed as the effects of different management actions are assumed to be uncertain. Our motivating application is to the conservation of dynamic resources, such as populations, which are naturally positive quantities and where discrete and distinct courses of management actions, or control strategies, are available. The theory is illustrated with examples from population ecology.

Citation: Daniel Franco, Chris Guiver, Phoebe Smith, Stuart Townley. A switching feedback control approach for persistence of managed resources. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021109
References:
[1]

S. N. Amin and M. Zafar, Studies on age, growth and virtual population analysis of Coilia dussumieri from the neritic water of Bangladesh, J. Biol. Sci, 4 (2004), 342-344.   Google Scholar

[2]

K. J. Astrom, Adaptive feedback control, Proc. IEEE, 75 (1987), 185-217.  doi: 10.1109/PROC.1987.13721.  Google Scholar

[3]

I. Barkana, Simple adaptive control—a stable direct model reference adaptive control methodology—brief survey, Internat. J. Adapt. Control Signal Process., 28 (2014), 567-603.  doi: 10.1002/acs.2411.  Google Scholar

[4]

A. Berman, M. Neumann and R. J. Stern, Nonnegative Matrices in Dynamic Systems, John Wiley & Sons Inc., New York, 1989.  Google Scholar

[5]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[6]

B. L. Byrd, T. V. Cole, L. Engleby, L. P. Garrison, J. M. Hatch, A. Henry, S. C. Horstman, J. A. Litz, M. Lyssikatos, K. Mullin, et al., US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments-2015, 2016. Google Scholar

[7]

H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, 2001. Google Scholar

[8]

C. W. Clark, Mathematical Bioeconomics, 3$^{rd}$ edition, The Mathematics of Conservation, John Wiley & Sons, Inc., Hoboken, 2010.  Google Scholar

[9]

J. Cooke, Eubalaena glacialis, The IUCN Red List of Threatened Species, (2018). Google Scholar

[10]

M. De Lara and L. Doyen, Sustainable Management of Natural Resources: Mathematical Models and Methods, Springer-Verlag, Berlin, 2008. Google Scholar

[11]

E. A. Eager, Modelling and analysis of population dynamics using Lur'e systems accounting for competition from adult conspecifics, Lett. Biomath., 3 (2016), 41-58.  doi: 10.30707/LiB3.1Eager.  Google Scholar

[12]

E. A. Eager and R. Rebarber, Sensitivity and elasticity analysis of a Lur'e system used to model a population subject to density-dependent reproduction, Math. Biosci., 282 (2016), 34-45.  doi: 10.1016/j.mbs.2016.09.016.  Google Scholar

[13]

E. A. EagerR. Rebarber and B. Tenhumberg, Global asymptotic stability of plant-seed bank models, J. Math. Bio., 69 (2014), 1-37.  doi: 10.1007/s00285-013-0689-z.  Google Scholar

[14]

D. FrancoC. GuiverH. Logemann and J. Perán, Boundedness, persistence and stability for classes of forced difference equations arising in population ecology, J. Math. Bio., 79 (2019), 1029-1076.  doi: 10.1007/s00285-019-01388-7.  Google Scholar

[15]

H. I. Freedman and J. W.-H. So, Persistence in discrete semidynamical systems, SIAM J. Math. Anal., 20 (1989), 930-938.  doi: 10.1137/0520062.  Google Scholar

[16]

M. Fujiwara and H. Caswell, Demography of the endangered North Atlantic right whale, Nature, 414 (2001), 537-541.  doi: 10.1038/35107054.  Google Scholar

[17]

T. A. GowanJ. G. Ortega-OrtizJ. A. HostetlerP. K. HamiltonA. R. KnowltonK. A. JacksonR. C. GeorgeC. R. Taylor and and P. J. Naessig, Temporal and demographic variation in partial migration of the north atlantic right whale, Sci. Rep., 9 (2019), 1-11.  doi: 10.1038/s41598-018-36723-3.  Google Scholar

[18]

C. GuiverC. EdholmY. JinM. MuellerJ. PowellR. RebarberB. Tenhumberg and S. Townley, Simple adaptive control for positive linear systems with applications to pest management, SIAM J. Appl. Math., 76 (2016), 238-275.  doi: 10.1137/140996926.  Google Scholar

[19]

E. Halfon, The systems identification problem and the development of ecosystem models, Simulation, 25 (1975), 149-152.  doi: 10.1177/003754977502500604.  Google Scholar

[20] E. Halfon, Theoretical Systems Ecology, Academic Press, New York, 1979.   Google Scholar
[21]

M. P. Hassell, J. H. Lawton and R. May, Patterns of dynamical behaviour in single-species populations, J. Anim. Ecol., (1976), 471–486. doi: 10.2307/3886.  Google Scholar

[22]

B. IngramC. BarlowJ. BurchmoreG. GooleyS. Rowland and and A. Sanger, Threatened native freshwater fishes in {A}ustralia–some case histories, J. Fish Biol., 37 (1990), 175-182.  doi: 10.1111/j.1095-8649.1990.tb05033.x.  Google Scholar

[23]

J. Koehn, M. Lintermans, J. Lieschke and D. Gilligan, Maccullochella macquariensis, The IUCN Red List of Threatened Species 2019: e.T12574A123378211, 2019. Google Scholar

[24]

S. D. Kraus, Rates and potential causes of mortality in North Atlantic right whales (Eubalaena glacialis), Mar. Mammal Sci., 6 (1990), 278-291.   Google Scholar

[25]

E. L. Meyer-Gutbrod and C. H. Greene, Uncertain recovery of the North Atlantic right whale in a changing ocean, Glob. Change Biol., 24 (2018), 455-464.  doi: 10.1111/gcb.13929.  Google Scholar

[26]

R. M. Pace IIIP. J. Corkeron and S. D. Kraus, State–space mark–recapture estimates reveal a recent decline in abundance of North Atlantic right whales, Ecol. Evol., 7 (2017), 8730-8741.   Google Scholar

[27]

R. RebarberB. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models, Theo. Popul. Bio., 81 (2012), 81-87.  doi: 10.1016/j.tpb.2011.11.002.  Google Scholar

[28]

P. Reichert and M. Omlin, On the usefulness of overparameterized ecological models, Ecol. Mod., 95 (1997), 289-299.  doi: 10.1016/S0304-3800(96)00043-9.  Google Scholar

[29]

A. O. Shelton and M. Mangel, Fluctuations of fish populations and the magnifying effects of fishing, Proc. Natl. Acad. Sci. U.S.A, 108 (2011), 7075-7080.  doi: 10.1073/pnas.1100334108.  Google Scholar

[30]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/gsm/118.  Google Scholar

[31]

H. L. Smith and H. R. Thieme, Persistence and global stability for a class of discrete time structured population models, Dynamical Systems, 33 (2013), 4627-4645.  doi: 10.3934/dcds.2013.33.4627.  Google Scholar

[32]

P. Smith, A Control Theoretic Approach to the Conservation of Migratory Species, Ph.D thesis, University of Bath, in preparation. Google Scholar

[33]

I. StottS. TownleyD. Carslake and D. J. Hodgson, On reducibility and ergodicity of population projection matrix models, Methods Ecol. Evol., 1 (2010), 242-252.  doi: 10.1111/j.2041-210X.2010.00032.x.  Google Scholar

[34]

C. R. ToddS. J. Nicol and J. D. Koehn, Density-dependence uncertainty in population models for the conservation management of trout cod, Maccullochella macquariensis, Ecol. Mod., 171 (2004), 359-380.   Google Scholar

[35]

S. TownleyR. Rebarber and B. Tenhumberg, Feedback control systems analysis of density dependent population dynamics, Systems & Control Lett., 61 (2012), 309-315.  doi: 10.1016/j.sysconle.2011.11.014.  Google Scholar

[36]

B. K. Williams, Adaptive management of natural resources — framework and issues, J. Environ. Manage., 92 (2011), 1346-1353.  doi: 10.1016/j.jenvman.2010.10.041.  Google Scholar

show all references

References:
[1]

S. N. Amin and M. Zafar, Studies on age, growth and virtual population analysis of Coilia dussumieri from the neritic water of Bangladesh, J. Biol. Sci, 4 (2004), 342-344.   Google Scholar

[2]

K. J. Astrom, Adaptive feedback control, Proc. IEEE, 75 (1987), 185-217.  doi: 10.1109/PROC.1987.13721.  Google Scholar

[3]

I. Barkana, Simple adaptive control—a stable direct model reference adaptive control methodology—brief survey, Internat. J. Adapt. Control Signal Process., 28 (2014), 567-603.  doi: 10.1002/acs.2411.  Google Scholar

[4]

A. Berman, M. Neumann and R. J. Stern, Nonnegative Matrices in Dynamic Systems, John Wiley & Sons Inc., New York, 1989.  Google Scholar

[5]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[6]

B. L. Byrd, T. V. Cole, L. Engleby, L. P. Garrison, J. M. Hatch, A. Henry, S. C. Horstman, J. A. Litz, M. Lyssikatos, K. Mullin, et al., US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments-2015, 2016. Google Scholar

[7]

H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, 2001. Google Scholar

[8]

C. W. Clark, Mathematical Bioeconomics, 3$^{rd}$ edition, The Mathematics of Conservation, John Wiley & Sons, Inc., Hoboken, 2010.  Google Scholar

[9]

J. Cooke, Eubalaena glacialis, The IUCN Red List of Threatened Species, (2018). Google Scholar

[10]

M. De Lara and L. Doyen, Sustainable Management of Natural Resources: Mathematical Models and Methods, Springer-Verlag, Berlin, 2008. Google Scholar

[11]

E. A. Eager, Modelling and analysis of population dynamics using Lur'e systems accounting for competition from adult conspecifics, Lett. Biomath., 3 (2016), 41-58.  doi: 10.30707/LiB3.1Eager.  Google Scholar

[12]

E. A. Eager and R. Rebarber, Sensitivity and elasticity analysis of a Lur'e system used to model a population subject to density-dependent reproduction, Math. Biosci., 282 (2016), 34-45.  doi: 10.1016/j.mbs.2016.09.016.  Google Scholar

[13]

E. A. EagerR. Rebarber and B. Tenhumberg, Global asymptotic stability of plant-seed bank models, J. Math. Bio., 69 (2014), 1-37.  doi: 10.1007/s00285-013-0689-z.  Google Scholar

[14]

D. FrancoC. GuiverH. Logemann and J. Perán, Boundedness, persistence and stability for classes of forced difference equations arising in population ecology, J. Math. Bio., 79 (2019), 1029-1076.  doi: 10.1007/s00285-019-01388-7.  Google Scholar

[15]

H. I. Freedman and J. W.-H. So, Persistence in discrete semidynamical systems, SIAM J. Math. Anal., 20 (1989), 930-938.  doi: 10.1137/0520062.  Google Scholar

[16]

M. Fujiwara and H. Caswell, Demography of the endangered North Atlantic right whale, Nature, 414 (2001), 537-541.  doi: 10.1038/35107054.  Google Scholar

[17]

T. A. GowanJ. G. Ortega-OrtizJ. A. HostetlerP. K. HamiltonA. R. KnowltonK. A. JacksonR. C. GeorgeC. R. Taylor and and P. J. Naessig, Temporal and demographic variation in partial migration of the north atlantic right whale, Sci. Rep., 9 (2019), 1-11.  doi: 10.1038/s41598-018-36723-3.  Google Scholar

[18]

C. GuiverC. EdholmY. JinM. MuellerJ. PowellR. RebarberB. Tenhumberg and S. Townley, Simple adaptive control for positive linear systems with applications to pest management, SIAM J. Appl. Math., 76 (2016), 238-275.  doi: 10.1137/140996926.  Google Scholar

[19]

E. Halfon, The systems identification problem and the development of ecosystem models, Simulation, 25 (1975), 149-152.  doi: 10.1177/003754977502500604.  Google Scholar

[20] E. Halfon, Theoretical Systems Ecology, Academic Press, New York, 1979.   Google Scholar
[21]

M. P. Hassell, J. H. Lawton and R. May, Patterns of dynamical behaviour in single-species populations, J. Anim. Ecol., (1976), 471–486. doi: 10.2307/3886.  Google Scholar

[22]

B. IngramC. BarlowJ. BurchmoreG. GooleyS. Rowland and and A. Sanger, Threatened native freshwater fishes in {A}ustralia–some case histories, J. Fish Biol., 37 (1990), 175-182.  doi: 10.1111/j.1095-8649.1990.tb05033.x.  Google Scholar

[23]

J. Koehn, M. Lintermans, J. Lieschke and D. Gilligan, Maccullochella macquariensis, The IUCN Red List of Threatened Species 2019: e.T12574A123378211, 2019. Google Scholar

[24]

S. D. Kraus, Rates and potential causes of mortality in North Atlantic right whales (Eubalaena glacialis), Mar. Mammal Sci., 6 (1990), 278-291.   Google Scholar

[25]

E. L. Meyer-Gutbrod and C. H. Greene, Uncertain recovery of the North Atlantic right whale in a changing ocean, Glob. Change Biol., 24 (2018), 455-464.  doi: 10.1111/gcb.13929.  Google Scholar

[26]

R. M. Pace IIIP. J. Corkeron and S. D. Kraus, State–space mark–recapture estimates reveal a recent decline in abundance of North Atlantic right whales, Ecol. Evol., 7 (2017), 8730-8741.   Google Scholar

[27]

R. RebarberB. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models, Theo. Popul. Bio., 81 (2012), 81-87.  doi: 10.1016/j.tpb.2011.11.002.  Google Scholar

[28]

P. Reichert and M. Omlin, On the usefulness of overparameterized ecological models, Ecol. Mod., 95 (1997), 289-299.  doi: 10.1016/S0304-3800(96)00043-9.  Google Scholar

[29]

A. O. Shelton and M. Mangel, Fluctuations of fish populations and the magnifying effects of fishing, Proc. Natl. Acad. Sci. U.S.A, 108 (2011), 7075-7080.  doi: 10.1073/pnas.1100334108.  Google Scholar

[30]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/gsm/118.  Google Scholar

[31]

H. L. Smith and H. R. Thieme, Persistence and global stability for a class of discrete time structured population models, Dynamical Systems, 33 (2013), 4627-4645.  doi: 10.3934/dcds.2013.33.4627.  Google Scholar

[32]

P. Smith, A Control Theoretic Approach to the Conservation of Migratory Species, Ph.D thesis, University of Bath, in preparation. Google Scholar

[33]

I. StottS. TownleyD. Carslake and D. J. Hodgson, On reducibility and ergodicity of population projection matrix models, Methods Ecol. Evol., 1 (2010), 242-252.  doi: 10.1111/j.2041-210X.2010.00032.x.  Google Scholar

[34]

C. R. ToddS. J. Nicol and J. D. Koehn, Density-dependence uncertainty in population models for the conservation management of trout cod, Maccullochella macquariensis, Ecol. Mod., 171 (2004), 359-380.   Google Scholar

[35]

S. TownleyR. Rebarber and B. Tenhumberg, Feedback control systems analysis of density dependent population dynamics, Systems & Control Lett., 61 (2012), 309-315.  doi: 10.1016/j.sysconle.2011.11.014.  Google Scholar

[36]

B. K. Williams, Adaptive management of natural resources — framework and issues, J. Environ. Manage., 92 (2011), 1346-1353.  doi: 10.1016/j.jenvman.2010.10.041.  Google Scholar

Figure 2.1.  Illustration of the conditions (NL3)(a) and (NL3)(b) in panels (A) and (B), respectively. The dashed straight lines have gradient $ p_h >0 $
Figure 3.1.  Numerical simulations of the adaptive switching feedback control scheme (2.4) for the North Atlantic right whale model described in Example 3.1
Figure 3.2.  Functions $ g_h $, panel (a), with parameters, panel (b), from Example 3.2
Figure 3.3.  Numerical simulations of the adaptive switching feedback control scheme (2.4) for the trout cod model from Example 3.2
Figure 3.4.  Numerical simulations of the adaptive switching feedback control scheme (2.4) for the trout cod model from Example 3.2 with 100 random initial conditions $ x_0 $
Figure 3.5.  Functions $ g_h $, panel (a), with parameters, panel (b), from Example 3.3
Figure 3.6.  Numerical simulations of the adaptive switching feedback control scheme (2.4) for the Gold-spotted grenadier anchovy model from Example 3.3
Figure 3.7.  Numerical simulations of the adaptive switching feedback control scheme (2.4) for the trout cod model discussed in Section 3.1
Table 3.1.  Vital rates used in the population projection matrices $ A_h $ in (3.1)
Strategy ($ h $) Vital rates
$ s_{2, 1} $ $ s_{2, 2} $ $ s_{3, 2} $ $ s_{3, 3} $ $ s_{3, 4} $ $ s_{4, 2} $ $ s_{4, 3} $ $ f_{1, 2} $ $ f_{1, 3} $
1 0.85 0.85 0.08 0.8 0.64 0.02 0.19 0.0080 0.0760
2 0.92 0.86 0.08 0.8 0.83 0.02 0.19 0.0091 0.0865
Strategy ($ h $) Vital rates
$ s_{2, 1} $ $ s_{2, 2} $ $ s_{3, 2} $ $ s_{3, 3} $ $ s_{3, 4} $ $ s_{4, 2} $ $ s_{4, 3} $ $ f_{1, 2} $ $ f_{1, 3} $
1 0.85 0.85 0.08 0.8 0.64 0.02 0.19 0.0080 0.0760
2 0.92 0.86 0.08 0.8 0.83 0.02 0.19 0.0091 0.0865
[1]

Zaizheng Li, Zhitao Zhang. Uniqueness and nondegeneracy of positive solutions to an elliptic system in ecology. Electronic Research Archive, , () : -. doi: 10.3934/era.2021060

[2]

Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021005

[3]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[4]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[5]

B. A. Wagner, Andrea L. Bertozzi, L. E. Howle. Positive feedback control of Rayleigh-Bénard convection. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 619-642. doi: 10.3934/dcdsb.2003.3.619

[6]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[7]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[8]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[9]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[10]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[11]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[12]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[13]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[14]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[15]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[16]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[17]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[18]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[19]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[20]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]