• Previous Article
    Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions
  • DCDS-B Home
  • This Issue
  • Next Article
    A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems
doi: 10.3934/dcdsb.2021111

Phase transitions of the SIR Rumor spreading model with a variable trust rate

1. 

Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 446-701, South Korea

2. 

National Institute for Mathematical Sciences, Daejeon, 34047, South Korea

* Corresponding author: Hyowon Seo

Received  November 2020 Published  April 2021

We study a threshold phenomenon of rumor outbreak on the SIR rumor spreading model with a variable trust rate depending on the populations of ignorants and spreaders. Rumor outbreak in the SIR rumor spreading model is defined as a persistence of the final rumor size in the large population limit or thermodynamics limit $ (n\to \infty) $, where $ 1/n $ is the initial population of spreaders. We present a rigorous proof for the existence of threshold on the final size of the rumor with respect to the basic reproduction number $ \mathcal{R}_0 $. Moreover, we prove that a phase transition phenomenon occurs for the final size of the rumor (as an order parameter) with respect to the basic reproduction number and provide a criterion to determine whether the phase transition is of first or second order. Precisely, we prove that there is a critical number $ \mathcal{R}_1 $ such that if $ \mathcal{R}_1>1 $, then the phase transition is of the first order, i.e., the limit of the final size is not a continuous function with respect to $ \mathcal{R}_0 $. The discontinuity is a jump-type discontinuity and it occurs only at $ \mathcal{R}_0 = 1 $. If $ \mathcal{R}_1<1 $, then the phase transition is second order, i.e., the limit of the final size is continuous with respect to $ \mathcal{R}_0 $ and its derivative exists, except at $ \mathcal{R}_0 = 1 $, and the derivative is not continuous at $ \mathcal{R}_0 = 1 $. We also present numerical simulations to demonstrate our analytical results for the threshold phenomena and phase transition order criterion.

Citation: Sun-Ho Choi, Hyowon Seo, Minha Yoo. Phase transitions of the SIR Rumor spreading model with a variable trust rate. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021111
References:
[1]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[2]

D.J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.  doi: 10.1093/imamat/1.1.42.  Google Scholar

[4]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296.  doi: 10.2307/1967124.  Google Scholar

[5]

K. HattafN. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13 (2012), 1866-1872.  doi: 10.1016/j.nonrwa.2011.12.015.  Google Scholar

[6]

B. I. HongN. Hahm and S.-H. Choi, SIR rumor spreading model with trust rate distribution, Netwworks & Heterogeneous Media, 13 (2018), 515-530.  doi: 10.3934/nhm.2018023.  Google Scholar

[7]

A. Mavragani and G. Ochoa, The internet and the anti-vaccine movement: Tracking the 2017 EU measles outbreak, Big Data and Cognitive Computing, 2 (2018), 2. doi: 10.3390/bdcc2010002.  Google Scholar

[8]

Y. MorenoR. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B-Condensed Matter and Complex Systems, 26 (2002), 521-529.  doi: 10.1140/epjb/e20020122.  Google Scholar

[9]

J. D. Murray, Mathematical Biology, Springer Verlag, Berlin, 1993. doi: 10.1007/b98869.  Google Scholar

[10]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A: Statistical Mechanics and its Applications, 374 (2007), 457-470.  doi: 10.1016/j.physa.2006.07.017.  Google Scholar

[11]

J. K. Olive, P. J. Hotez, A. Damania and M. S. Nolan, The state of the antivaccine movement in the United States: A focused examination of nonmedical exemptions in states and counties, PLoS medicine, 15 (2018), e1002578. doi: 10.1371/journal.pmed.1002578.  Google Scholar

[12]

M. V. Pezzo and J. W. Beckstead, A multilevel analysis of rumor transmission: Effects of anxiety and belief in two field experiments, Basic and Applied Social Psychology, 28 (2006), 91-100.  doi: 10.1207/s15324834basp2801_8.  Google Scholar

[13]

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, 87 (2015), 925. doi: 10.1103/RevModPhys.87.925.  Google Scholar

[14]

C. WangZ. X. TanY. YeL. WangK. H. Cheong and N. G. Xie, A rumor spreading model based on information entropy, Scientific reports, 7 (2017), 1-14.  doi: 10.1038/s41598-017-09171-8.  Google Scholar

[15]

Y.-Q. WangX.-Y. YangY.-L Han and X.-A. Wang, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516.  doi: 10.1088/0253-6102/59/4/21.  Google Scholar

[16]

D. B. WrightK. London and M. Waechter, Social anxiety moderates memory conformity in adolescents, Applied Cognitive Psychology, 24 (2010), 1034-1045.  doi: 10.1002/acp.1604.  Google Scholar

[17]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[18]

Y. ZanJ. WuP. Li and Q. Yu, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A: Statistical Mechanics and its Applications, 405 (2014), 159-170.  doi: 10.1016/j.physa.2014.03.021.  Google Scholar

[19]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A: Statistical Mechanics and its Applications, 391 (2012), 2444-2453.  doi: 10.1016/j.physa.2011.12.008.  Google Scholar

[20]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A: Statistical Mechanics and its Applications, 392 (2013), 995-1003.  doi: 10.1016/j.physa.2012.09.030.  Google Scholar

show all references

References:
[1]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[2]

D.J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.  doi: 10.1093/imamat/1.1.42.  Google Scholar

[4]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296.  doi: 10.2307/1967124.  Google Scholar

[5]

K. HattafN. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13 (2012), 1866-1872.  doi: 10.1016/j.nonrwa.2011.12.015.  Google Scholar

[6]

B. I. HongN. Hahm and S.-H. Choi, SIR rumor spreading model with trust rate distribution, Netwworks & Heterogeneous Media, 13 (2018), 515-530.  doi: 10.3934/nhm.2018023.  Google Scholar

[7]

A. Mavragani and G. Ochoa, The internet and the anti-vaccine movement: Tracking the 2017 EU measles outbreak, Big Data and Cognitive Computing, 2 (2018), 2. doi: 10.3390/bdcc2010002.  Google Scholar

[8]

Y. MorenoR. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B-Condensed Matter and Complex Systems, 26 (2002), 521-529.  doi: 10.1140/epjb/e20020122.  Google Scholar

[9]

J. D. Murray, Mathematical Biology, Springer Verlag, Berlin, 1993. doi: 10.1007/b98869.  Google Scholar

[10]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A: Statistical Mechanics and its Applications, 374 (2007), 457-470.  doi: 10.1016/j.physa.2006.07.017.  Google Scholar

[11]

J. K. Olive, P. J. Hotez, A. Damania and M. S. Nolan, The state of the antivaccine movement in the United States: A focused examination of nonmedical exemptions in states and counties, PLoS medicine, 15 (2018), e1002578. doi: 10.1371/journal.pmed.1002578.  Google Scholar

[12]

M. V. Pezzo and J. W. Beckstead, A multilevel analysis of rumor transmission: Effects of anxiety and belief in two field experiments, Basic and Applied Social Psychology, 28 (2006), 91-100.  doi: 10.1207/s15324834basp2801_8.  Google Scholar

[13]

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, 87 (2015), 925. doi: 10.1103/RevModPhys.87.925.  Google Scholar

[14]

C. WangZ. X. TanY. YeL. WangK. H. Cheong and N. G. Xie, A rumor spreading model based on information entropy, Scientific reports, 7 (2017), 1-14.  doi: 10.1038/s41598-017-09171-8.  Google Scholar

[15]

Y.-Q. WangX.-Y. YangY.-L Han and X.-A. Wang, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516.  doi: 10.1088/0253-6102/59/4/21.  Google Scholar

[16]

D. B. WrightK. London and M. Waechter, Social anxiety moderates memory conformity in adolescents, Applied Cognitive Psychology, 24 (2010), 1034-1045.  doi: 10.1002/acp.1604.  Google Scholar

[17]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[18]

Y. ZanJ. WuP. Li and Q. Yu, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A: Statistical Mechanics and its Applications, 405 (2014), 159-170.  doi: 10.1016/j.physa.2014.03.021.  Google Scholar

[19]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A: Statistical Mechanics and its Applications, 391 (2012), 2444-2453.  doi: 10.1016/j.physa.2011.12.008.  Google Scholar

[20]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A: Statistical Mechanics and its Applications, 392 (2013), 995-1003.  doi: 10.1016/j.physa.2012.09.030.  Google Scholar

Figure 1.  Time evolutions of $ (I(t), S(t), R(t)) $ with initial data (4.1) when $ \mathcal{R}_0 = 0.5 $
Figure 2.  Time evolutions of $ (I(t), S(t), R(t)) $ with initial data (4.1) when $ \mathcal{R}_0 = 2 $
Figure 3.  Numerical simulations for $ \phi^\infty_n $ when $ T = 10^4 $
Figure 4.  Numerical simulations for $ \phi^\infty_n $ when $ T = 10^6 $
Figure 5.  Phase transition diagrams for $ \phi^e $ when $ n = 10^{10} $ and final time $ T = 10^6 $
Figure 6.  Phase portrait for $ \sigma_R>\sigma_S $ or $ \lambda_S^0>0 $
[1]

Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution. Networks & Heterogeneous Media, 2018, 13 (3) : 515-530. doi: 10.3934/nhm.2018023

[2]

Sun-Ho Choi, Hyowon Seo, Minha Yoo. A multi-stage SIR model for rumor spreading. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2351-2372. doi: 10.3934/dcdsb.2020124

[3]

Jinxian Li, Ning Ren, Zhen Jin. An SICR rumor spreading model in heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1497-1515. doi: 10.3934/dcdsb.2019237

[4]

Ulisse Stefanelli. Analysis of a variable time-step discretization for a phase transition model with micro-movements. Communications on Pure & Applied Analysis, 2006, 5 (3) : 659-673. doi: 10.3934/cpaa.2006.5.659

[5]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[6]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[7]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[8]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[9]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[10]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[11]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[12]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[13]

Kousuke Kuto, Tohru Tsujikawa. Stationary patterns for an adsorbate-induced phase transition model I: Existence. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1105-1117. doi: 10.3934/dcdsb.2010.14.1105

[14]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4255-4281. doi: 10.3934/dcds.2021035

[15]

Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1015-1041. doi: 10.3934/dcdsb.2019206

[16]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[17]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[18]

Marie Henry. Singular limit of an activator-inhibitor type model. Networks & Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781

[19]

Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483

[20]

Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko. Sharp interface limit in a phase field model of cell motility. Networks & Heterogeneous Media, 2017, 12 (4) : 551-590. doi: 10.3934/nhm.2017023

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (28)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]