November  2021, 26(11): 5807-5825. doi: 10.3934/dcdsb.2021116

Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs

1. 

Polytechnic University of Marche, Department of Management, Piazzale R. Martelli 8, 60121, Ancona (AN), Italy

2. 

University of Modena and Reggio Emilia, Department of Economics Marco Biagi, Via Jacopo Berengario 51, 41121, Modena, Italy

* Corresponding author: giovanni.campisi@unimore.it

Received  October 2020 Revised  February 2021 Published  November 2021 Early access  April 2021

It is well known that regulation and efficiency are two important issues on banking literature. The goal of the paper is to analyse them through a banking duopoly model with heterogeneous expectations. To this purpose, we consider two scenarios. In the first one, we focus on regulation effects. In particular, empirical literature on Italian banks finds evidence on the asymmetry of the costs of regulation that penalize small banks with respect to the large ones. In this direction, we analyse a duopoly model where small banks and large banks have different forecasting rules and we capture the differences of the regulations' effects assuming asymmetry in the cost functions. We introduce linear cost function for small banks and quadratic cost function for large banks. In the second scenario, we study the relation between regulation and bank efficiency highlighting empirical results showing that large banks register higher level of inefficiency than small banks. Moreover, in order to stress new evidences and to confirm empirical results on banking regulation and efficiency, we conduct an analytical and numerical analysis.

Citation: Serena Brianzoni, Giovanni Campisi. Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5807-5825. doi: 10.3934/dcdsb.2021116
References:
[1]

H. N. Agiza and A. A. Elsadany, Nonlinear dynamics in the Cournot duopoly game with heterogeneous players, Physica A: Statistical Mechanics and its Applications, 320 (2003), 512-524.  doi: 10.1016/S0378-4371(02)01648-5.

[2]

A. AgliariC. Chiarella and L. Gardini, A re-evaluation of adaptive expectations in light of global nonlinear dynamic analysis, Journal of Economic Behavior & Organization, 60 (2006), 526-552.  doi: 10.1016/j.jebo.2004.07.006.

[3]

F. Aiello and G. Bonanno, Profit and cost efficiency in the italian banking industry (2006-2011), Economics and Business Letters, 2 (2013), 190-205.  doi: 10.17811/ebl.2.4.2013.190-205.

[4]

P. Alessandrini, M. Croci and A. Zazzaro, The geography of banking power: The role of functional distance, in The Banks and the Italian Economy, Springer, 2009, 93-123.

[5]

P. Alessandrini, M. Fratianni, L. Papi and A. Zazzaro, The asymmetric burden of regulation: Will local banks survive, Money and Finance Research group (Mo. Fi. R. ) Working Papers No, 125, 1-19.

[6]

P. Alessandrini and L. Papi, Banche locali e piccole imprese dopo la crisi tra nuove regole e innovazioni digitali, Money and Finance Research group (Mo. Fi. R. ) Working Papers No, 148, 1-25.

[7]

P. Alessandrini and L. Papi, L'impatto della "bolla regolamentare" sulle banche: Alcune valutazioni, Money and Finance Research group (Mo. Fi. R. ) Working Papers No, 150, 1-35.

[8]

A. N. BergerA. SaundersJ. M. Scalise and G. F. Udell, The effects of bank mergers and acquisitions on small business lending, Journal of Financial Economics, 50 (1998), 187-229. 

[9]

G. -I. Bischi, C. Chiarella, M. Kopel, F. Szidarovszky et al., Nonlinear Oligopolies, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-02106-0.

[10]

G. I. Bischi and F. Lamantia, Coexisting attractors and complex basins in discrete-time economic models, in Nonlinear Dynamical Systems in Economics, Springer, 2005, 187-231. doi: 10.1007/3-211-38043-4_7.

[11]

G.-I. BischiL. Stefanini and L. Gardini, Synchronization, intermittency and critical curves in a duopoly game, Mathematics and Computers in Simulation, 44 (1998), 559-585.  doi: 10.1016/S0378-4754(97)00100-6.

[12]

S. BrianzoniG. Campisi and A. Russo, Corruption and economic growth with non constant labor force growth, Communications in Nonlinear Science and Numerical Simulation, 58 (2018), 202-219.  doi: 10.1016/j.cnsns.2017.07.007.

[13]

S. BrianzoniL. Gori and E. Michetti, Dynamics of a Bertrand duopoly with differentiated products and nonlinear costs: Analysis, comparisons and new evidences, Chaos, Solitons & Fractals, 79 (2015), 191-203.  doi: 10.1016/j.chaos.2015.05.014.

[14]

S. BrianzoniC. Mammana and E. Michetti, Nonlinear dynamics in a business-cycle model with logistic population growth, Chaos, Solitons & Fractals, 40 (2009), 717-730.  doi: 10.1016/j.chaos.2007.08.041.

[15]

S. Brianzoni, C. Mammana and E. Michetti, Local and global dynamics in a discrete time growth model with nonconcave production function, Discrete Dynamics in Nature and Society, 2012 (2012), Art. ID 536570, 1-22. doi: 10.1155/2012/536570.

[16]

E. Dia and M. Giuliodori, Portfolio separation and the dynamics of bank interest rates, Scottish Journal of Political Economy, 59 (2012), 28-46.  doi: 10.1111/j.1467-9485.2011.0567.x.

[17]

R. Dieci and F. Westerhoff, Heterogeneous speculators, endogenous fluctuations and interacting markets: A model of stock prices and exchange rates, Journal of Economic Dynamics and Control, 34 (2010), 743-764.  doi: 10.1016/j.jedc.2009.11.002.

[18]

G. FagioloD. Giachini and A. Roventini, Innovation, finance, and economic growth: An agent-based approach, Journal of Economic Interaction and Coordination, 15 (2020), 703-736.  doi: 10.1007/s11403-019-00258-1.

[19]

L. Fanti, The dynamics of a banking duopoly with capital regulations, Economic Modelling, 37 (2014), 340-349.  doi: 10.1016/j.econmod.2013.11.010.

[20]

L. FantiL. GoriC. Mammana and E. Michetti, The dynamics of a Bertrand duopoly with differentiated products: Synchronization, intermittency and global dynamics, Chaos, Solitons & Fractals, 52 (2013), 73-86.  doi: 10.1016/j.chaos.2013.04.002.

[21]

L. FantiL. Gori and M. Sodini, Nonlinear dynamics in a Cournot duopoly with relative profit delegation, Chaos, Solitons & Fractals, 45 (2012), 1469-1478.  doi: 10.1016/j.chaos.2012.08.008.

[22]

C. A. Favero and L. Papi, Technical efficiency and scale efficiency in the Italian banking sector: a non-parametric approach, Applied Economics, 27 (1995), 385-395.  doi: 10.1080/00036849500000123.

[23]

L. GardiniF. TramontanaV. Avrutin and M. Schanz, Border-collision bifurcations in 1d piecewise-linear maps and Leonov's approach, International Journal of Bifurcation and Chaos, 20 (2010), 3085-3104.  doi: 10.1142/S021812741002757X.

[24]

A. Giannola, A. Lopes, C. Ricci and G. Scarfiglieri, Divari territoriali ed efficienza del sistema bancario italiano, Quintieri B. (a cura di), Finanza Istituzioni e Sviluppo Regionale, il Mulino, Bologna, 219-253.

[25]

L. Giordano and A. Lopes, Preferenza al rischio e qualità degli impieghi come determinanti dell'efficienza del sistema bancario italiano, Giannola, A. (a cura di), Riforme istituzionali e Mutamento Strutturale, Mercati, imprese e istituzioni in un sistema dualisticoi, Carocci, Roma.

[26]

L. Giordano and A. Lopes, Le banche italiane tra consolidamento e recuperi di efficienza (1999-2008). una promessa mantenuta?, Giannola, A. Lopes, A. Sarno, D. (a cura di), I Problemi Dello Sviluppo Economico e del suo Finanziamento Nelle Aree Deboli, Carocci, Roma, 169-202.

[27]

C. GirardoneP. Molyneux and E. P. Gardener, Analysing the determinants of bank efficiency: The case of Italian banks, Applied Economics, 36 (2004), 215-227.  doi: 10.1080/0003684042000175334.

[28]

M. A. Klein, A theory of the banking firm, Journal of Money, Credit and Banking, 3 (1971), 205-218.  doi: 10.2307/1991279.

[29]

F. LamantiaM. Pezzino and F. Tramontana, Dynamic analysis of discontinuous best response with innovation, Journal of Economic Dynamics and Control, 91 (2018), 120-133.  doi: 10.1016/j.jedc.2018.01.024.

[30] A. Medio and M. Lines, Nonlinear Dynamics: A Primer, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511754050.
[31]

M. Monti et al., Deposit, Credit and Interest Rate Determination Under Alternative Bank Objective Function, . Karl Shell, Giorgio P. Szegö (Eds. ), Mathematical methods in investment and finance, North-Holland/American Elsevier, 1972, 431-454.

[32]

A. Resti, Evaluating the cost-efficiency of the Italian banking system: What can be learned from the joint application of parametric and non-parametric techniques, Journal of Banking & Finance, 21 (1997), 221-250.  doi: 10.1016/S0378-4266(96)00036-2.

[33]

E. Saltari and G. Travaglini, L'economia Italiana Del Nuovo Millennio, (Vol. 282). Carocci, Roma, 2009.

[34]

M. L. Stefani, V. Vacca, D. Coin, S. Del Prete, C. Demma, M. Galardo, I. Garri, S. Mocetti and D. Pellegrino, Le Banche Locali e il Finanziamento Dei Territori: Evidenze Per l'Italia (2007-2014), 324, Banca d'Italia, 2016.

[35]

F. Tramontana, Heterogeneous duopoly with isoelastic demand function, Economic Modelling, 27 (2010), 350-357.  doi: 10.1016/j.econmod.2009.09.014.

[36]

F. Tramontana, L. Gardini, V. Avrutin and M. Schanz, Period adding in piecewise linear maps with two discontinuities, International Journal of Bifurcation and Chaos, 22 (2012), 1250068, 1-30. doi: 10.1142/S021812741250068X.

[37]

F. Tramontana, L. Gardini, R. Dieci and F. Westerhoff, The emergence of bull and bear dynamics in a nonlinear model of interacting markets, Discrete Dynamics in Nature and Society, 2009 (2009), Art. ID 310471, 1-30. doi: 10.1155/2009/310471.

[38]

F. TramontanaF. Westerhoff and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders, Journal of Economic Behavior & Organization, 74 (2010), 187-205.  doi: 10.1016/j.jebo.2010.02.008.

[39]

F. TramontanaF. Westerhoff and L. Gardini, A simple financial market model with chartists and fundamentalists: Market entry levels and discontinuities, Mathematics and Computers in Simulation, 108 (2015), 16-40.  doi: 10.1016/j.matcom.2013.06.002.

show all references

References:
[1]

H. N. Agiza and A. A. Elsadany, Nonlinear dynamics in the Cournot duopoly game with heterogeneous players, Physica A: Statistical Mechanics and its Applications, 320 (2003), 512-524.  doi: 10.1016/S0378-4371(02)01648-5.

[2]

A. AgliariC. Chiarella and L. Gardini, A re-evaluation of adaptive expectations in light of global nonlinear dynamic analysis, Journal of Economic Behavior & Organization, 60 (2006), 526-552.  doi: 10.1016/j.jebo.2004.07.006.

[3]

F. Aiello and G. Bonanno, Profit and cost efficiency in the italian banking industry (2006-2011), Economics and Business Letters, 2 (2013), 190-205.  doi: 10.17811/ebl.2.4.2013.190-205.

[4]

P. Alessandrini, M. Croci and A. Zazzaro, The geography of banking power: The role of functional distance, in The Banks and the Italian Economy, Springer, 2009, 93-123.

[5]

P. Alessandrini, M. Fratianni, L. Papi and A. Zazzaro, The asymmetric burden of regulation: Will local banks survive, Money and Finance Research group (Mo. Fi. R. ) Working Papers No, 125, 1-19.

[6]

P. Alessandrini and L. Papi, Banche locali e piccole imprese dopo la crisi tra nuove regole e innovazioni digitali, Money and Finance Research group (Mo. Fi. R. ) Working Papers No, 148, 1-25.

[7]

P. Alessandrini and L. Papi, L'impatto della "bolla regolamentare" sulle banche: Alcune valutazioni, Money and Finance Research group (Mo. Fi. R. ) Working Papers No, 150, 1-35.

[8]

A. N. BergerA. SaundersJ. M. Scalise and G. F. Udell, The effects of bank mergers and acquisitions on small business lending, Journal of Financial Economics, 50 (1998), 187-229. 

[9]

G. -I. Bischi, C. Chiarella, M. Kopel, F. Szidarovszky et al., Nonlinear Oligopolies, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-02106-0.

[10]

G. I. Bischi and F. Lamantia, Coexisting attractors and complex basins in discrete-time economic models, in Nonlinear Dynamical Systems in Economics, Springer, 2005, 187-231. doi: 10.1007/3-211-38043-4_7.

[11]

G.-I. BischiL. Stefanini and L. Gardini, Synchronization, intermittency and critical curves in a duopoly game, Mathematics and Computers in Simulation, 44 (1998), 559-585.  doi: 10.1016/S0378-4754(97)00100-6.

[12]

S. BrianzoniG. Campisi and A. Russo, Corruption and economic growth with non constant labor force growth, Communications in Nonlinear Science and Numerical Simulation, 58 (2018), 202-219.  doi: 10.1016/j.cnsns.2017.07.007.

[13]

S. BrianzoniL. Gori and E. Michetti, Dynamics of a Bertrand duopoly with differentiated products and nonlinear costs: Analysis, comparisons and new evidences, Chaos, Solitons & Fractals, 79 (2015), 191-203.  doi: 10.1016/j.chaos.2015.05.014.

[14]

S. BrianzoniC. Mammana and E. Michetti, Nonlinear dynamics in a business-cycle model with logistic population growth, Chaos, Solitons & Fractals, 40 (2009), 717-730.  doi: 10.1016/j.chaos.2007.08.041.

[15]

S. Brianzoni, C. Mammana and E. Michetti, Local and global dynamics in a discrete time growth model with nonconcave production function, Discrete Dynamics in Nature and Society, 2012 (2012), Art. ID 536570, 1-22. doi: 10.1155/2012/536570.

[16]

E. Dia and M. Giuliodori, Portfolio separation and the dynamics of bank interest rates, Scottish Journal of Political Economy, 59 (2012), 28-46.  doi: 10.1111/j.1467-9485.2011.0567.x.

[17]

R. Dieci and F. Westerhoff, Heterogeneous speculators, endogenous fluctuations and interacting markets: A model of stock prices and exchange rates, Journal of Economic Dynamics and Control, 34 (2010), 743-764.  doi: 10.1016/j.jedc.2009.11.002.

[18]

G. FagioloD. Giachini and A. Roventini, Innovation, finance, and economic growth: An agent-based approach, Journal of Economic Interaction and Coordination, 15 (2020), 703-736.  doi: 10.1007/s11403-019-00258-1.

[19]

L. Fanti, The dynamics of a banking duopoly with capital regulations, Economic Modelling, 37 (2014), 340-349.  doi: 10.1016/j.econmod.2013.11.010.

[20]

L. FantiL. GoriC. Mammana and E. Michetti, The dynamics of a Bertrand duopoly with differentiated products: Synchronization, intermittency and global dynamics, Chaos, Solitons & Fractals, 52 (2013), 73-86.  doi: 10.1016/j.chaos.2013.04.002.

[21]

L. FantiL. Gori and M. Sodini, Nonlinear dynamics in a Cournot duopoly with relative profit delegation, Chaos, Solitons & Fractals, 45 (2012), 1469-1478.  doi: 10.1016/j.chaos.2012.08.008.

[22]

C. A. Favero and L. Papi, Technical efficiency and scale efficiency in the Italian banking sector: a non-parametric approach, Applied Economics, 27 (1995), 385-395.  doi: 10.1080/00036849500000123.

[23]

L. GardiniF. TramontanaV. Avrutin and M. Schanz, Border-collision bifurcations in 1d piecewise-linear maps and Leonov's approach, International Journal of Bifurcation and Chaos, 20 (2010), 3085-3104.  doi: 10.1142/S021812741002757X.

[24]

A. Giannola, A. Lopes, C. Ricci and G. Scarfiglieri, Divari territoriali ed efficienza del sistema bancario italiano, Quintieri B. (a cura di), Finanza Istituzioni e Sviluppo Regionale, il Mulino, Bologna, 219-253.

[25]

L. Giordano and A. Lopes, Preferenza al rischio e qualità degli impieghi come determinanti dell'efficienza del sistema bancario italiano, Giannola, A. (a cura di), Riforme istituzionali e Mutamento Strutturale, Mercati, imprese e istituzioni in un sistema dualisticoi, Carocci, Roma.

[26]

L. Giordano and A. Lopes, Le banche italiane tra consolidamento e recuperi di efficienza (1999-2008). una promessa mantenuta?, Giannola, A. Lopes, A. Sarno, D. (a cura di), I Problemi Dello Sviluppo Economico e del suo Finanziamento Nelle Aree Deboli, Carocci, Roma, 169-202.

[27]

C. GirardoneP. Molyneux and E. P. Gardener, Analysing the determinants of bank efficiency: The case of Italian banks, Applied Economics, 36 (2004), 215-227.  doi: 10.1080/0003684042000175334.

[28]

M. A. Klein, A theory of the banking firm, Journal of Money, Credit and Banking, 3 (1971), 205-218.  doi: 10.2307/1991279.

[29]

F. LamantiaM. Pezzino and F. Tramontana, Dynamic analysis of discontinuous best response with innovation, Journal of Economic Dynamics and Control, 91 (2018), 120-133.  doi: 10.1016/j.jedc.2018.01.024.

[30] A. Medio and M. Lines, Nonlinear Dynamics: A Primer, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511754050.
[31]

M. Monti et al., Deposit, Credit and Interest Rate Determination Under Alternative Bank Objective Function, . Karl Shell, Giorgio P. Szegö (Eds. ), Mathematical methods in investment and finance, North-Holland/American Elsevier, 1972, 431-454.

[32]

A. Resti, Evaluating the cost-efficiency of the Italian banking system: What can be learned from the joint application of parametric and non-parametric techniques, Journal of Banking & Finance, 21 (1997), 221-250.  doi: 10.1016/S0378-4266(96)00036-2.

[33]

E. Saltari and G. Travaglini, L'economia Italiana Del Nuovo Millennio, (Vol. 282). Carocci, Roma, 2009.

[34]

M. L. Stefani, V. Vacca, D. Coin, S. Del Prete, C. Demma, M. Galardo, I. Garri, S. Mocetti and D. Pellegrino, Le Banche Locali e il Finanziamento Dei Territori: Evidenze Per l'Italia (2007-2014), 324, Banca d'Italia, 2016.

[35]

F. Tramontana, Heterogeneous duopoly with isoelastic demand function, Economic Modelling, 27 (2010), 350-357.  doi: 10.1016/j.econmod.2009.09.014.

[36]

F. Tramontana, L. Gardini, V. Avrutin and M. Schanz, Period adding in piecewise linear maps with two discontinuities, International Journal of Bifurcation and Chaos, 22 (2012), 1250068, 1-30. doi: 10.1142/S021812741250068X.

[37]

F. Tramontana, L. Gardini, R. Dieci and F. Westerhoff, The emergence of bull and bear dynamics in a nonlinear model of interacting markets, Discrete Dynamics in Nature and Society, 2009 (2009), Art. ID 310471, 1-30. doi: 10.1155/2009/310471.

[38]

F. TramontanaF. Westerhoff and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders, Journal of Economic Behavior & Organization, 74 (2010), 187-205.  doi: 10.1016/j.jebo.2010.02.008.

[39]

F. TramontanaF. Westerhoff and L. Gardini, A simple financial market model with chartists and fundamentalists: Market entry levels and discontinuities, Mathematics and Computers in Simulation, 108 (2015), 16-40.  doi: 10.1016/j.matcom.2013.06.002.

Figure 1.  In the $ (c_1,c_2)- $plane the set of points between the red and blue curve ensures positive equilibrium loans, while the yellow curve represents the parameter values $ (c_1,c_2) $ for which a flip bifurcation occurs. In Panel (a) the parameters are: $ a = 3.2 $, $ \alpha = 1.5 $, $ b = 1.5 $, $ \gamma = 0.7 $, $ r_k = 2.8 $. In panel (b) $ \gamma = 0.1 $ while the other parameters as in Panel (a)
Figure 2.  Two interesting economic scenarios through bifurcation diagrams. In Panel (a) the parameters are: $ a = 3 $, $ \alpha = 1.38 $, $ b = 0.12 $, $ \gamma = 0.2 $, $ r_k = 2.8 $, $ c_{1} = 0.15 $ and $ c_{2}\in (0.01,0.6) $. In Panel (b) $ c_{1} = 0.1 $ and $ c_{2}\in (0.01,0.6) $ while the other parameters as in panel (a)
Figure 3.  On the left is depicted the attractor of the 4-cycle for $ \alpha = 1.25 $, $ \gamma = 0.35 $, $ r_{k} = 2.8 $, $ a = 3.2 $, $ b = 0.1 $, $ c_{1} = 0.08 $, $ c_{2} = 0.7 $. On the right panel a bifurcation diagram for $ c_{1}\in (1.4,2.1) $ showing the period-doubling of the 2-cycle for $ \alpha = 2 $, $ \gamma = 0.25 $, $ r_{k} = 2.3 $, $ a = 3.2 $, $ b = 0.4 $, $ c_{2} = 1.1 $
Figure 4.  On the left, basins of attraction of the two-cycle, given the following values of the parameters, $ \alpha = 1.35 $, $ \gamma = 0.7 $, $ r_{k} = 1.5 $, $ a = 3 $, $ b = 1.9 $, $ c_{1} = 0.01 $, $ c_{2} = 0.27 $. On the right, basins of attraction showing the birth and the stability of a 4-cycle for $ a = 3.27 $ and the other parameters as in the left panel
Figure 5.  In (a), four pieces chaotic attractor for $ \alpha = 1.38 $, $ \gamma = 0.35 $, $ r_{k} = 2.8 $, $ a = 3 $, $ b = 0.12 $, $ c_{1} = 0.13 $, $ c_{2} = 0.78 $. In (b), two pieces chaotic attractor for $ c_{2} = 0.8 $ and the other parameters as in Panel (a)
Figure 6.  In (a), connected chaotic attractor for $ c_{2} = 0.84 $ and the other parameters as in Panel (a) of Figure 5. On the right, cycle cartogram in the ($ c_{1},c_{2} $)-plane for parameter values as in Panel (a) of Figure 5
Figure 7.  The time series of the loans of large (Panel (a)) and small (Panel (b)) Italian banks. The real time series are depicted in blue, while in red the time series of the loans resulting from the stochastic model
Figure 8.  Monte Carlo simulations for analyse differences in loans' demand of the two banks for several combinations of costs and regulation parameters. In (a), $ c_{1},c_{2}\in [0.01,0.4] $ and the other parameters as in Table 1. In (b) and (c), joint effect of the costs and regulation keeping fixed all other parameters as in Table 1. In (b), the loans' demand are plotted with respect to the costs of the two banks when $ c_{1},c_{2}\in [0.01,0.3] $ and $ \gamma\in[0.05,0.4] $. In (c) the loans' demand are plotted with respect to the parameter of regulation $ \gamma $ when $ c_{1},c_{2}\in [0.01,0.3] $ and $ \gamma\in[0.05,0.4] $. In (d), the effects of regulation on the loans' demand when $ \gamma\in [0.05,0.4] $ and the other parameters as in Table 1
Table 1.  Parameter setting and initial values
$ \alpha $ $ \gamma $ $ r_{k} $ $ a $ $ b $ $ c_{1} $ $ c_{2} $ $ \sigma_{1} $ $ \sigma_{1} $
1.04 0.18 3.6 1.68 0.043 0.08 0.38 0.12 0.06
$ \alpha $ $ \gamma $ $ r_{k} $ $ a $ $ b $ $ c_{1} $ $ c_{2} $ $ \sigma_{1} $ $ \sigma_{1} $
1.04 0.18 3.6 1.68 0.043 0.08 0.38 0.12 0.06
Table 2.  Summary statistics of banks' loans including mean, standard deviation (sd), skewness, minimum and maximum value for real time series of the loans of large banks ($ L_{1}^{real} $), real time series of the loans of small banks ($ L_{2}^{real} $) and the simulated stochastic time series of the loans for large ($ L_{1}^{SS} $) and small ($ L_{2}^{SS} $) banks
Mean sd Min Max Skewness Kurtosis
$ L_{1}^{real} $ 291, 440, 000 64, 858, 000 192, 020, 000 356, 490, 000 -0.4471 1.6507
$ L_{2}^{real} $ 224, 430, 000 25, 598, 000 186, 240, 000 263, 480, 000 -0.0867 1.7266
$ L_{1}^{SS} $ 345, 330, 000 7, 315, 000 331, 320, 000 355, 280, 000 -0.4075 2.2085
$ L_{2}^{SS} $ 224, 080, 000 3, 652, 000 216, 660, 000 230, 890, 000 -0.1410 2.9930
Mean sd Min Max Skewness Kurtosis
$ L_{1}^{real} $ 291, 440, 000 64, 858, 000 192, 020, 000 356, 490, 000 -0.4471 1.6507
$ L_{2}^{real} $ 224, 430, 000 25, 598, 000 186, 240, 000 263, 480, 000 -0.0867 1.7266
$ L_{1}^{SS} $ 345, 330, 000 7, 315, 000 331, 320, 000 355, 280, 000 -0.4075 2.2085
$ L_{2}^{SS} $ 224, 080, 000 3, 652, 000 216, 660, 000 230, 890, 000 -0.1410 2.9930
[1]

Iraklis Kollias, Elias Camouzis, John Leventides. Global analysis of solutions on the Cournot-Theocharis duopoly with variable marginal costs. Journal of Dynamics and Games, 2017, 4 (1) : 25-39. doi: 10.3934/jdg.2017002

[2]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[3]

Qing-you Yan, Juan-bo Li, Ju-liang Zhang. Licensing schemes in Stackelberg model under asymmetric information of product costs. Journal of Industrial and Management Optimization, 2007, 3 (4) : 763-774. doi: 10.3934/jimo.2007.3.763

[4]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[5]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235

[6]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[7]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial and Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[8]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[9]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

[10]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[11]

Christopher Chong, Dmitry Pelinovsky. Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1019-1031. doi: 10.3934/dcdss.2011.4.1019

[12]

Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 645-662. doi: 10.3934/dcdss.2020035

[13]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[14]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[15]

Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275

[16]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081

[17]

Lana Horvat Dmitrović. Box dimension and bifurcations of one-dimensional discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1287-1307. doi: 10.3934/dcds.2012.32.1287

[18]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[19]

Héctor Barge, José M. R. Sanjurjo. Higher dimensional topology and generalized Hopf bifurcations for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2585-2601. doi: 10.3934/dcds.2021204

[20]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (277)
  • HTML views (299)
  • Cited by (0)

Other articles
by authors

[Back to Top]