[1]
|
N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard Equation to the Hele-Shaw Model, Arch. Rational Mech. Anal., 128 (1994), 165-205.
doi: 10.1007/BF00375025.
|
[2]
|
N. D. Alikakos and G. Fusco, Ostwald ripening for dilute systems under quasistationary dynamics, Comm. Math. Phys., 238 (2003), 429-479.
doi: 10.1007/s00220-003-0833-5.
|
[3]
|
N. D. Alikakos, G. Fusco and G. Karali, The effect of the geometry of the particle distribution in Ostwald ripening, Comm. Math. Phys., 238 (2003), 481-488.
doi: 10.1007/s00220-003-0834-4.
|
[4]
|
N. D. Alikakos, G. Fusco and G. Karali, Ostwald ripening in two dimensions- The rigorous derivation of the equations from Mullins-Sekerka dynamics, J. Differential Equations, 205 (2004), 1-49.
doi: 10.1016/j.jde.2004.05.008.
|
[5]
|
A. Altarovici, J. Muhle-Karbe and H. M. Soner, Asymptotics for fixed transaction costs, Finance Stoch., 19 (2015), 363-414.
doi: 10.1007/s00780-015-0261-3.
|
[6]
|
D. C. Antonopoulou, D. Blömker and G. D. Karali, The sharp interface limit for the stochastic Cahn-Hilliard equation, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), 280-298.
doi: 10.1214/16-AIHP804.
|
[7]
|
D. C. Antonopoulou, G. D. Karali and A. N. K. Yip, On the parabolic Stefan problem for Ostwald ripening with kinetic undercooling and inhomogeneous driving force, J. Differential Equations, 252 (2012), 4679-4718.
doi: 10.1016/j.jde.2012.01.016.
|
[8]
|
British Pound v US Dollar Data, https://www.poundsterlinglive.com.,,
|
[9]
|
X. Chen, The Hele-Shaw problem and area-preserving curve shortening motions, Arch. Rational Mech. Anal., 123 (1993), 117-151.
doi: 10.1007/BF00695274.
|
[10]
|
X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, Journal of Differential Geometry, 44 (1996), 262-311.
|
[11]
|
X. Chen, X. Hong and F. Yi, Existence, uniqueness and regularity of classical solutions of Mullins-Sekerka problem, Comm. Partial Differential Equations, 21 (1996), 1705-1727.
doi: 10.1080/03605309608821243.
|
[12]
|
X. Chen and M. Dai, Characterization of optimal strategy for multiasset investment and consumption with transaction costs, SIAM J. Financial Math., 4 (2013), 857-883.
doi: 10.1137/120898991.
|
[13]
|
X. Chen and F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 164 (1992), 350-362.
doi: 10.1016/0022-247X(92)90119-X.
|
[14]
|
R. Cont and A. de Larrard, Price dynamics in a Markovian limit order market, SIAM J. Financial. Math., 4 (2013), 1-25.
doi: 10.1137/110856605.
|
[15]
|
R. Cont, S. Stoikov and R. Talreja, A stochastic model for order book dynamics, Oper. Res., 58 (2010), 549-563.
doi: 10.1287/opre.1090.0780.
|
[16]
|
E. Ekström, Selected Problems in Financial Mathematics, PhD Thesis, Uppsala Universitet, Sweden, 2004.
|
[17]
|
L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.
doi: 10.1002/cpa.3160450903.
|
[18]
|
T. Funaki, Singular limit for stochastic reaction-diffusion equation and generation of random interfaces, Acta Math. Sin. (Engl. Ser.), 15 (1999), 407-438.
doi: 10.1007/BF02650735.
|
[19]
|
M. D. Gould, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn and S. D. Howison, Limit order books, Quant. Finance, 13 (2013), 1709-1742.
doi: 10.1080/14697688.2013.803148.
|
[20]
|
V. Henderson, Prospect theory, liquidation, and the disposition effect, Management Science, 58 (2012), 445-460.
|
[21]
|
T. Lybek and A. Sarr, Measuring Liquidity in Financial Markets, International Monetary Fund, work-in-progress, No. 02/232, 2002.
|
[22]
|
H. M. Markowitz, Portfolio selection: Efficient diversification of investments, John Wiley and Sons, Inc., New York, 1959.
|
[23]
|
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560.
|
[24]
|
M. Müller, Stochastic Stefan-type problem under first-order boundary conditions, Ann. Appl. Probab., 28 (2018), 2335-2369.
doi: 10.1214/17-AAP1359.
|
[25]
|
B. Niethammer, Derivation of the LSW-theory for Ostwald ripening by homogenization methods, Arch. Rational Mech. Anal., 147 (1999), 119-178.
doi: 10.1007/s002050050147.
|
[26]
|
B. Niethammer, The LSW model for Ostwald ripening with kinetic undercooling, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 1337-1361.
doi: 10.1017/S0308210500000718.
|
[27]
|
W. Ostwald, Blocking of Ostwald ripening allowing long-term stabilization, Z. Phys. Chem., 37 (1901), 385 pp.
|
[28]
|
C. Parlour and D. Seppi, Handbook of Financial Intermediation & Banking, North-Holland (imprint of Elsevier), Amsterdam, eds. A. Boot and A. Thakor, 2008.
|
[29]
|
Z. Zheng, Stochastic Stefan problems: Existence, uniqueness, and modeling of market limit orders, PhD Thesis, University of Illinois at Urbana-Champaign, 2012.
|
[30]
|
G. Zimmerman, 2 Portfolio Protection Strategies That Don't Work - and 2 That Do, Advisors Voices, 2016. https://www.nerdwallet.com/blog/investing/2-portfolio-protection-strategies-dont-work/
|