
-
Previous Article
Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source
- DCDS-B Home
- This Issue
-
Next Article
A competition model in the chemostat with allelopathy and substrate inhibition
On the family of cubic parabolic polynomials
Departamento de Matemática, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil |
For a sequence $ (a_n) $ of complex numbers we consider the cubic parabolic polynomials $ f_n(z) = z^3+a_n z^2+z $ and the sequence $ (F_n) $ of iterates $ F_n = f_n\circ\dots\circ f_1 $. The Fatou set $ \mathcal{F}_0 $ is the set of all $ z\in\hat{\mathbb{C}} $ such that the sequence $ (F_n) $ is normal. The complement of the Fatou set is called the Julia set and denoted by $ \mathcal{J}_0 $. The aim of this paper is to study some properties of $ \mathcal{J}_0 $. As a particular case, when the sequence $ (a_n) $ is constant, $ a_n = a $, then the iteration $ F_n $ becomes the classical iteration $ f^n $ where $ f(z) = z^3+a z^2+z $. The connectedness locus, $ M $, is the set of all $ a\in\mathbb{C} $ such that the Julia set is connected. In this paper we investigate some symmetric properties of $ M $ as well.
References:
[1] |
A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. |
[2] |
A. Bonifant, J. Kiwi and J. Milnor,
Cubic polynomial maps with periodic critical orbit. II. Escape regions, Conform. Geom. Dyn., 14 (2010), 68-112.
doi: 10.1090/S1088-4173-10-00204-3. |
[3] |
B. Branner and J. Hubbard,
The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math., 160 (1988), 143-206.
doi: 10.1007/BF02392275. |
[4] |
B. Branner, and J. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169, (1992) 229-325.
doi: 10.1007/BF02392761. |
[5] |
R. Brück,
Geometric properties of Julia sets of the composition of polynomials of the form $z^2 + c_n$, Pacific J. Math., 198 (2001), 347-372.
doi: 10.2140/pjm.2001.198.347. |
[6] |
R. Brück and M. Büger,
Generalized iteration, Computational Methods and Function Theory, 3 (2003), 201-252.
doi: 10.1007/BF03321035. |
[7] |
R. Brück, M. Büger and S. Reitz,
Random iterations of polynomials of the form $z^2 + c_n$: Connectedness of Julia sets, Ergodic Theory Dynam. Systems, 19 (1999), 1221-1231.
doi: 10.1017/S0143385799141658. |
[8] |
M. Büger,
On the composition of polynomials of the form $z^2+c_n$, Math. Ann., 310 (1998), 661-683.
doi: 10.1007/s002080050165. |
[9] |
M. Büger,
Self-similarity of Julia sets of the composition of polynomials, Ergodic Theory Dynam. Systems, 17 (1997), 1289-1297.
doi: 10.1017/S0143385797086458. |
[10] |
L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9. |
[11] |
G. Carrier, M. Krook and C. Pearson, Functions of a Complex Variable: Theory and Technique, Classics in Applied Mathematics, vol. 49, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
doi: 10.1137/1.9780898719116. |
[12] |
R. Mañe and L. Rocha,
Julia sets are uniformly perfect, Proceeding of the American Mathematical Society, 116 (1992), 251-257.
doi: 10.1090/S0002-9939-1992-1106180-2. |
[13] |
J. Milnor, Dynamics in One Complex Variable, 3$^{rd}$ edition, AMS, New Jersey, 2006. |
[14] |
J. Milnor, Cubic polynomials with periodic critical orbit, part I, in Complex Dynamics Families and Friends, A K Peters/CRC Press, Wellesley, MA, 2009,333-411.
doi: 10.1201/b10617-13. |
[15] |
C. Pommerenke,
Uniformly perfect sets and the Poincaré metric, Arch. Math., 32 (1979), 192-199.
doi: 10.1007/BF01238490. |
[16] |
T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623776.![]() ![]() ![]() |
[17] |
S. Reitz, Asymptotische iteration, Mitt. Math. Sem. Giessen 225, (1996) 1-79. |
[18] |
P. Roesch, Cubic polynomials with a parabolic point, Ergodic Theory Dynam. Systems 30 (2010) 1843-1867.
doi: 10.1017/S0143385709000820. |
[19] |
N. Steinmetz, Rational Iteration: Complex Analytic Dynamical Systems, Walter de Gruyter & Co., Berlin,, (1993).
doi: 10.1515/9783110889314. |
show all references
References:
[1] |
A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. |
[2] |
A. Bonifant, J. Kiwi and J. Milnor,
Cubic polynomial maps with periodic critical orbit. II. Escape regions, Conform. Geom. Dyn., 14 (2010), 68-112.
doi: 10.1090/S1088-4173-10-00204-3. |
[3] |
B. Branner and J. Hubbard,
The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math., 160 (1988), 143-206.
doi: 10.1007/BF02392275. |
[4] |
B. Branner, and J. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169, (1992) 229-325.
doi: 10.1007/BF02392761. |
[5] |
R. Brück,
Geometric properties of Julia sets of the composition of polynomials of the form $z^2 + c_n$, Pacific J. Math., 198 (2001), 347-372.
doi: 10.2140/pjm.2001.198.347. |
[6] |
R. Brück and M. Büger,
Generalized iteration, Computational Methods and Function Theory, 3 (2003), 201-252.
doi: 10.1007/BF03321035. |
[7] |
R. Brück, M. Büger and S. Reitz,
Random iterations of polynomials of the form $z^2 + c_n$: Connectedness of Julia sets, Ergodic Theory Dynam. Systems, 19 (1999), 1221-1231.
doi: 10.1017/S0143385799141658. |
[8] |
M. Büger,
On the composition of polynomials of the form $z^2+c_n$, Math. Ann., 310 (1998), 661-683.
doi: 10.1007/s002080050165. |
[9] |
M. Büger,
Self-similarity of Julia sets of the composition of polynomials, Ergodic Theory Dynam. Systems, 17 (1997), 1289-1297.
doi: 10.1017/S0143385797086458. |
[10] |
L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9. |
[11] |
G. Carrier, M. Krook and C. Pearson, Functions of a Complex Variable: Theory and Technique, Classics in Applied Mathematics, vol. 49, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
doi: 10.1137/1.9780898719116. |
[12] |
R. Mañe and L. Rocha,
Julia sets are uniformly perfect, Proceeding of the American Mathematical Society, 116 (1992), 251-257.
doi: 10.1090/S0002-9939-1992-1106180-2. |
[13] |
J. Milnor, Dynamics in One Complex Variable, 3$^{rd}$ edition, AMS, New Jersey, 2006. |
[14] |
J. Milnor, Cubic polynomials with periodic critical orbit, part I, in Complex Dynamics Families and Friends, A K Peters/CRC Press, Wellesley, MA, 2009,333-411.
doi: 10.1201/b10617-13. |
[15] |
C. Pommerenke,
Uniformly perfect sets and the Poincaré metric, Arch. Math., 32 (1979), 192-199.
doi: 10.1007/BF01238490. |
[16] |
T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623776.![]() ![]() ![]() |
[17] |
S. Reitz, Asymptotische iteration, Mitt. Math. Sem. Giessen 225, (1996) 1-79. |
[18] |
P. Roesch, Cubic polynomials with a parabolic point, Ergodic Theory Dynam. Systems 30 (2010) 1843-1867.
doi: 10.1017/S0143385709000820. |
[19] |
N. Steinmetz, Rational Iteration: Complex Analytic Dynamical Systems, Walter de Gruyter & Co., Berlin,, (1993).
doi: 10.1515/9783110889314. |





[1] |
Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975 |
[2] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[3] |
Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure and Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211 |
[4] |
Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801 |
[5] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[6] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[7] |
Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327 |
[8] |
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 |
[9] |
Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291 |
[10] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[11] |
Lan Wen. On the preperiodic set. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237 |
[12] |
Héctor A. Tabares-Ospina, Mauricio Osorio. Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1895-1905. doi: 10.3934/dcdsb.2020008 |
[13] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[14] |
Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227 |
[15] |
Răzvan M. Tudoran. Dynamical systems with a prescribed globally bp-attracting set and applications to conservative dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 3013-3030. doi: 10.3934/dcds.2020159 |
[16] |
Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 |
[17] |
Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002 |
[18] |
Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165 |
[19] |
Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291 |
[20] |
Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]