[1]
|
I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Prog. Phys., 3 (2009), 60-63.
|
[2]
|
S. Banik and M. Kanoria, Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Appl. Math. Mech., 33 (2012), 483-498.
doi: 10.1007/s10483-012-1565-8.
|
[3]
|
K. Borgmeyer, R. Quintanilla and R. Racke, Phase-lag heat conduction: Decay rates for limit problems and well-posedness, J. Evol. Equ., 14 (2014), 863-884.
doi: 10.1007/s00028-014-0242-6.
|
[4]
|
M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476-488.
doi: 10.1016/j.cma.2006.05.006.
|
[5]
|
C. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, 247 (1958), 431-433.
|
[6]
|
P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, ZAMP-Z. Angew. Math. Phys., 19 (1968), 614-627.
doi: 10.1007/BF01594969.
|
[7]
|
P. J. Chen and W. O. Williams, A note on non-simple heat conduction, ZAMP-Z. Angew. Math. Phys., 19 (1968), 969-970.
doi: 10.1007/BF01602278.
|
[8]
|
P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, ZAMP-Z. Angew. Math. Phys., 20 (1969), 107-112.
doi: 10.1007/BF01591120.
|
[9]
|
S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.
doi: 10.1080/01495730601130919.
|
[10]
|
P. G. Ciarlet, Basic error estimates for elliptic problems, In: Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions eds., vol II 1991, 17-351.
|
[11]
|
M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Lett., 22 (2009), 1374-1379.
doi: 10.1016/j.aml.2009.03.010.
|
[12]
|
M. A. Ezzat, A. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuc. Eng. Des., 252 (2012), 267-277.
doi: 10.1016/j.nucengdes.2012.06.012.
|
[13]
|
M. Fabrizio and F. Franchi, Delayed thermal models: Stability and thermodynamics, J. Thermal Stresses, 37 (2014), 160-173.
doi: 10.1080/01495739.2013.839619.
|
[14]
|
A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses 15 (1992), 253-264.
doi: 10.1080/01495739208946136.
|
[15]
|
A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.
doi: 10.1007/BF00044969.
|
[16]
|
M. A. Hader, M. A. Al-Nimr and B. A. Abu Nabah, The dual-phase-lag heat conduction model in thin slabs under a fluctuating volumetric thermal disturbance, Int. J. Thermophys., 23 (2002), 1669-1680.
doi: 10.1023/A:1020754304107.
|
[17]
|
F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013.
|
[18]
|
A. Magaña, A. Miranville and R. Quintanilla, On the stability in phase-lag heat conduction with two temperatures, J. Evol. Equations, 18 (2018), 1697-1712.
doi: 10.1007/s00028-018-0457-z.
|
[19]
|
A. Magaña, A. Miranville and R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electronic Res. Arch., 27 (2019), 7-19.
doi: 10.3934/era.2019007.
|
[20]
|
A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Optim., 63 (2011), 133-150.
doi: 10.1007/s00245-010-9114-9.
|
[21]
|
S. Mukhopadhyay, R Prasad and R. Kumar, On the theory of two-temperature thermoelasticity with two phase-lags, J. Thermal Stresses, 34 (2011), 352-365.
doi: 10.1080/01495739.2010.550815.
|
[22]
|
M. A. Othman, W. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149-158.
doi: 10.1139/cjp-2013-0398.
|
[23]
|
R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilib. Thermodyn., 27 (2002), 217-227.
doi: 10.1515/JNETDY.2002.012.
|
[24]
|
R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, J. Thermal Stresses, 31 (2008), 260-269.
doi: 10.1080/01495730701738272.
|
[25]
|
R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.
doi: 10.1080/01495730903310599.
|
[26]
|
R. Quintanilla and P. M. Jordan, A note on the two-temperature theory with dual-phase-lag decay: Some exact solutions, Mech. Research Comm., 36 (2009), 796-803.
doi: 10.1016/j.mechrescom.2009.05.002.
|
[27]
|
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977-1001.
doi: 10.1137/05062860X.
|
[28]
|
R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.
doi: 10.1016/j.ijheatmasstransfer.2005.10.016.
|
[29]
|
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A Math. Phys. Eng. Sci., 463 (2007), 659-674.
doi: 10.1098/rspa.2006.1784.
|
[30]
|
R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.
doi: 10.1016/j.ijheatmasstransfer.2007.04.045.
|
[31]
|
R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differ. Integral Equ., 28 (2015), 291-308.
|
[32]
|
S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, Int. J. Heat Mass Transfer, 78 (2014), 58-63.
doi: 10.1016/j.ijheatmasstransfer.2014.06.066.
|
[33]
|
D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.
doi: 10.1115/1.2822329.
|
[34]
|
W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mech., 16 (1973), 83-117.
|
[35]
|
Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, Int. J. Heat Mass Transfer, 52 (2009), 4829-4834.
doi: 10.1016/j.ijheatmasstransfer.2009.06.007.
|