doi: 10.3934/dcdsb.2021130

On existence and numerical approximation in phase-lag thermoelasticity with two temperatures

1. 

Departamento de Matemáticas, ETS de Ingenieros de Caminos, Canales y Puertos, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain

2. 

Laboratório de Análise Numérica e Astrofísica, Departamento de Matemática, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil

3. 

Departamento de Matemática Aplicada I, Universidade de Vigo, Escola de Enxeñería de Telecomunicación, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain

4. 

Departament de Matemàtiques, Universitat Politècnica de Catalunya, C. Colom 11, 08222 Terrassa, Barcelona, Spain

* Corresponding author: José R. Fernández

Received  August 2020 Revised  March 2021 Published  April 2021

Fund Project: The work of M. Campo and J.R. Fernández has been partially supported by Ministerio de Ciencia, Innovación y Universidades under the research project PGC2018-096696-B-I00 (FEDER, UE). The work of M.I.M. Copetti has been partially supported by the Brazilian institution CNPq (grant 304709/2017-4). The work of R. Quintanilla has been supported by Ministerio de Economía y Competitividad under the research project "Análisis Matemático de Problemas de la Termomecánica" (MTM2016-74934-P), (AEI/FEDER, UE), and Ministerio de Ciencia, Innovación y Universidades under the research project "Análisis matemático aplicado a la termomecánica" (PID2019-105118GB-I00). The authors want to thank to the anonymous referees their useful comments which have allowed us to improve the paper

In this work we study from both variational and numerical points of view a thermoelastic problem which appears in the dual-phase-lag theory with two temperatures. An existence and uniqueness result is proved in the general case of different Taylor approximations for the heat flux and the inductive temperature. Then, in order to provide the numerical analysis, we restrict ourselves to the case of second-order approximations of the heat flux and first-order approximations for the inductive temperature. First, variational formulation of the corresponding problem is derived and an energy decay property is proved. Then, a fully discrete scheme is introduced by using the finite element method for the approximation of the spatial variable and the implicit Euler scheme for the discretization of the time derivatives. A discrete stability

Citation: Marco Campo, Maria I. M. Copetti, José R. Fernández, Ramón Quintanilla. On existence and numerical approximation in phase-lag thermoelasticity with two temperatures. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021130
References:
[1]

I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Prog. Phys., 3 (2009), 60-63.   Google Scholar

[2]

S. Banik and M. Kanoria, Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Appl. Math. Mech., 33 (2012), 483-498.  doi: 10.1007/s10483-012-1565-8.  Google Scholar

[3]

K. BorgmeyerR. Quintanilla and R. Racke, Phase-lag heat conduction: Decay rates for limit problems and well-posedness, J. Evol. Equ., 14 (2014), 863-884.  doi: 10.1007/s00028-014-0242-6.  Google Scholar

[4]

M. CampoJ. R. FernándezK. L. KuttlerM. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476-488.  doi: 10.1016/j.cma.2006.05.006.  Google Scholar

[5]

C. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, 247 (1958), 431-433.   Google Scholar

[6]

P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, ZAMP-Z. Angew. Math. Phys., 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[7]

P. J. Chen and W. O. Williams, A note on non-simple heat conduction, ZAMP-Z. Angew. Math. Phys., 19 (1968), 969-970.  doi: 10.1007/BF01602278.  Google Scholar

[8]

P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, ZAMP-Z. Angew. Math. Phys., 20 (1969), 107-112.  doi: 10.1007/BF01591120.  Google Scholar

[9]

S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.  doi: 10.1080/01495730601130919.  Google Scholar

[10]

P. G. Ciarlet, Basic error estimates for elliptic problems, In: Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions eds., vol II 1991, 17-351.  Google Scholar

[11]

M. DreherR. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Lett., 22 (2009), 1374-1379.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[12]

M. A. EzzatA. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuc. Eng. Des., 252 (2012), 267-277.  doi: 10.1016/j.nucengdes.2012.06.012.  Google Scholar

[13]

M. Fabrizio and F. Franchi, Delayed thermal models: Stability and thermodynamics, J. Thermal Stresses, 37 (2014), 160-173.  doi: 10.1080/01495739.2013.839619.  Google Scholar

[14]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses 15 (1992), 253-264. doi: 10.1080/01495739208946136.  Google Scholar

[15]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208. doi: 10.1007/BF00044969.  Google Scholar

[16]

M. A. HaderM. A. Al-Nimr and B. A. Abu Nabah, The dual-phase-lag heat conduction model in thin slabs under a fluctuating volumetric thermal disturbance, Int. J. Thermophys., 23 (2002), 1669-1680.  doi: 10.1023/A:1020754304107.  Google Scholar

[17]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[18]

A. MagañaA. Miranville and R. Quintanilla, On the stability in phase-lag heat conduction with two temperatures, J. Evol. Equations, 18 (2018), 1697-1712.  doi: 10.1007/s00028-018-0457-z.  Google Scholar

[19]

A. MagañaA. Miranville and R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electronic Res. Arch., 27 (2019), 7-19.  doi: 10.3934/era.2019007.  Google Scholar

[20]

A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Optim., 63 (2011), 133-150.  doi: 10.1007/s00245-010-9114-9.  Google Scholar

[21]

S. MukhopadhyayR Prasad and R. Kumar, On the theory of two-temperature thermoelasticity with two phase-lags, J. Thermal Stresses, 34 (2011), 352-365.  doi: 10.1080/01495739.2010.550815.  Google Scholar

[22]

M. A. OthmanW. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149-158.  doi: 10.1139/cjp-2013-0398.  Google Scholar

[23]

R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilib. Thermodyn., 27 (2002), 217-227.  doi: 10.1515/JNETDY.2002.012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, J. Thermal Stresses, 31 (2008), 260-269.  doi: 10.1080/01495730701738272.  Google Scholar

[25]

R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.  doi: 10.1080/01495730903310599.  Google Scholar

[26]

R. Quintanilla and P. M. Jordan, A note on the two-temperature theory with dual-phase-lag decay: Some exact solutions, Mech. Research Comm., 36 (2009), 796-803.  doi: 10.1016/j.mechrescom.2009.05.002.  Google Scholar

[27]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977-1001.  doi: 10.1137/05062860X.  Google Scholar

[28]

R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.  doi: 10.1016/j.ijheatmasstransfer.2005.10.016.  Google Scholar

[29]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A Math. Phys. Eng. Sci., 463 (2007), 659-674.  doi: 10.1098/rspa.2006.1784.  Google Scholar

[30]

R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.  doi: 10.1016/j.ijheatmasstransfer.2007.04.045.  Google Scholar

[31]

R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differ. Integral Equ., 28 (2015), 291-308.   Google Scholar

[32]

S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, Int. J. Heat Mass Transfer, 78 (2014), 58-63.  doi: 10.1016/j.ijheatmasstransfer.2014.06.066.  Google Scholar

[33]

D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.  doi: 10.1115/1.2822329.  Google Scholar

[34]

W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mech., 16 (1973), 83-117.   Google Scholar

[35]

Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, Int. J. Heat Mass Transfer, 52 (2009), 4829-4834.  doi: 10.1016/j.ijheatmasstransfer.2009.06.007.  Google Scholar

show all references

References:
[1]

I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Prog. Phys., 3 (2009), 60-63.   Google Scholar

[2]

S. Banik and M. Kanoria, Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Appl. Math. Mech., 33 (2012), 483-498.  doi: 10.1007/s10483-012-1565-8.  Google Scholar

[3]

K. BorgmeyerR. Quintanilla and R. Racke, Phase-lag heat conduction: Decay rates for limit problems and well-posedness, J. Evol. Equ., 14 (2014), 863-884.  doi: 10.1007/s00028-014-0242-6.  Google Scholar

[4]

M. CampoJ. R. FernándezK. L. KuttlerM. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476-488.  doi: 10.1016/j.cma.2006.05.006.  Google Scholar

[5]

C. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, 247 (1958), 431-433.   Google Scholar

[6]

P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, ZAMP-Z. Angew. Math. Phys., 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[7]

P. J. Chen and W. O. Williams, A note on non-simple heat conduction, ZAMP-Z. Angew. Math. Phys., 19 (1968), 969-970.  doi: 10.1007/BF01602278.  Google Scholar

[8]

P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, ZAMP-Z. Angew. Math. Phys., 20 (1969), 107-112.  doi: 10.1007/BF01591120.  Google Scholar

[9]

S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.  doi: 10.1080/01495730601130919.  Google Scholar

[10]

P. G. Ciarlet, Basic error estimates for elliptic problems, In: Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions eds., vol II 1991, 17-351.  Google Scholar

[11]

M. DreherR. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Lett., 22 (2009), 1374-1379.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[12]

M. A. EzzatA. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuc. Eng. Des., 252 (2012), 267-277.  doi: 10.1016/j.nucengdes.2012.06.012.  Google Scholar

[13]

M. Fabrizio and F. Franchi, Delayed thermal models: Stability and thermodynamics, J. Thermal Stresses, 37 (2014), 160-173.  doi: 10.1080/01495739.2013.839619.  Google Scholar

[14]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses 15 (1992), 253-264. doi: 10.1080/01495739208946136.  Google Scholar

[15]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208. doi: 10.1007/BF00044969.  Google Scholar

[16]

M. A. HaderM. A. Al-Nimr and B. A. Abu Nabah, The dual-phase-lag heat conduction model in thin slabs under a fluctuating volumetric thermal disturbance, Int. J. Thermophys., 23 (2002), 1669-1680.  doi: 10.1023/A:1020754304107.  Google Scholar

[17]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[18]

A. MagañaA. Miranville and R. Quintanilla, On the stability in phase-lag heat conduction with two temperatures, J. Evol. Equations, 18 (2018), 1697-1712.  doi: 10.1007/s00028-018-0457-z.  Google Scholar

[19]

A. MagañaA. Miranville and R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electronic Res. Arch., 27 (2019), 7-19.  doi: 10.3934/era.2019007.  Google Scholar

[20]

A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Optim., 63 (2011), 133-150.  doi: 10.1007/s00245-010-9114-9.  Google Scholar

[21]

S. MukhopadhyayR Prasad and R. Kumar, On the theory of two-temperature thermoelasticity with two phase-lags, J. Thermal Stresses, 34 (2011), 352-365.  doi: 10.1080/01495739.2010.550815.  Google Scholar

[22]

M. A. OthmanW. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149-158.  doi: 10.1139/cjp-2013-0398.  Google Scholar

[23]

R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilib. Thermodyn., 27 (2002), 217-227.  doi: 10.1515/JNETDY.2002.012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, J. Thermal Stresses, 31 (2008), 260-269.  doi: 10.1080/01495730701738272.  Google Scholar

[25]

R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.  doi: 10.1080/01495730903310599.  Google Scholar

[26]

R. Quintanilla and P. M. Jordan, A note on the two-temperature theory with dual-phase-lag decay: Some exact solutions, Mech. Research Comm., 36 (2009), 796-803.  doi: 10.1016/j.mechrescom.2009.05.002.  Google Scholar

[27]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977-1001.  doi: 10.1137/05062860X.  Google Scholar

[28]

R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.  doi: 10.1016/j.ijheatmasstransfer.2005.10.016.  Google Scholar

[29]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A Math. Phys. Eng. Sci., 463 (2007), 659-674.  doi: 10.1098/rspa.2006.1784.  Google Scholar

[30]

R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.  doi: 10.1016/j.ijheatmasstransfer.2007.04.045.  Google Scholar

[31]

R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differ. Integral Equ., 28 (2015), 291-308.   Google Scholar

[32]

S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, Int. J. Heat Mass Transfer, 78 (2014), 58-63.  doi: 10.1016/j.ijheatmasstransfer.2014.06.066.  Google Scholar

[33]

D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.  doi: 10.1115/1.2822329.  Google Scholar

[34]

W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mech., 16 (1973), 83-117.   Google Scholar

[35]

Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, Int. J. Heat Mass Transfer, 52 (2009), 4829-4834.  doi: 10.1016/j.ijheatmasstransfer.2009.06.007.  Google Scholar

Figure 1.  Example 1: Asymptotic behavior of the numerical scheme
Figure 2.  Example 1: Energy evolution in absolute and semilogarithmic scales
Figure 3.  Example 2: Evolution in time of the temperature and inductive temperature at point $ {\boldsymbol{x}} = (4, 0.5) $ for different values of parameter $ m $
Figure 4.  Example 2: Evolution in time of the temperature and inductive temperature at point $ {\boldsymbol{x}} = (1, 0.5) $ for different values of parameter $ m $
Figure 5.  Example 2: Evolution in time of the horizontal and vertical displacements at point $ {\boldsymbol{x}} = (1, 0.5) $ for different values of parameter $ m $
Table 1.  Example 1: Numerical errors ($ \times 100 $) for some $ nd $ and $ k $
$ n_{el} \downarrow k \to $ 0.02 0.01 0.005 0.001 0.0001
8 0.0986766 0.0985441 0.0993091 0.1004371 0.1018615
16 0.0368700 0.0313313 0.0303459 0.0308803 0.0315329
32 0.0246722 0.0145489 0.0105503 0.0090745 0.0093450
64 0.0244400 0.0124476 0.0066725 0.0030114 0.0028566
128 0.0245822 0.0124424 0.0063666 0.0016409 0.0009504
$ n_{el} \downarrow k \to $ 0.02 0.01 0.005 0.001 0.0001
8 0.0986766 0.0985441 0.0993091 0.1004371 0.1018615
16 0.0368700 0.0313313 0.0303459 0.0308803 0.0315329
32 0.0246722 0.0145489 0.0105503 0.0090745 0.0093450
64 0.0244400 0.0124476 0.0066725 0.0030114 0.0028566
128 0.0245822 0.0124424 0.0063666 0.0016409 0.0009504
[1]

Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007

[2]

Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure & Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011

[3]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[4]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[5]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[6]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[8]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[9]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[10]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[11]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[12]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[13]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[14]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[15]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[16]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[17]

Emil Minchev. Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter. Conference Publications, 2005, 2005 (Special) : 652-661. doi: 10.3934/proc.2005.2005.652

[18]

Eric Dubach, Robert Luce, Jean-Marie Thomas. Pseudo-Conform Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra. Communications on Pure & Applied Analysis, 2009, 8 (1) : 237-254. doi: 10.3934/cpaa.2009.8.237

[19]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[20]

Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (43)
  • HTML views (75)
  • Cited by (0)

[Back to Top]