[1]
|
A. Aydoǧ, S. T. McQuade and N. P. Duteil, Opinion dynamics on a general compact Riemannian manifold, Netw. Heterog. Media, 12 (2017), 489-523.
doi: 10.3934/nhm.2017021.
|
[2]
|
I. Barbǎlat, Syst$\grave{e}$mes d'$\acute{e}$quations diff$\acute{e}$rentielles d'oscillations non lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267–270.
|
[3]
|
J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.
doi: 10.1038/211562a0.
|
[4]
|
Z. Cai and R. Li, Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation, SIAM J. Sci. Comput., 32 (2010), 2875-2907.
doi: 10.1137/100785466.
|
[5]
|
M. Caponigro, A. C. Lai and B. Piccoli, A nonlinear model of opinion formation on the sphere, Discrete Contin. Dyn. Syst., 35 (2015), 4241-4268.
doi: 10.3934/dcds.2015.35.4241.
|
[6]
|
J. A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse, An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci., 28 (2018), 1037-1066.
doi: 10.1142/S0218202518500276.
|
[7]
|
J. A. Carrillo, S. Jin, L. Li and Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. S5, 22 pp.
doi: 10.1051/cocv/2020046.
|
[8]
|
S. Chandra, M. Girvan and E. Ott, Continuous versus discontinuous transitions in the D-dimensional generalized Kuramoto model: Odd D is different, Phys. Rev. X, 9 (2019), 011002.
doi: 10.1103/PhysRevX.9.011002.
|
[9]
|
S. Chandra and E. Ott, Observing microscopic transitions from macroscopic bursts: Instability-mediated resetting in the incoherent regime of the D-dimensional generalized Kuramoto model, Chaos, 29 (2019), 033124.
doi: 10.1063/1.5084965.
|
[10]
|
C. Chen, S. Liu, X.-q. Shi, H. Chaté and Y. Wu, Weak synchronization and large-scale collective oscillation in dense bacterial suspensions, Nature, 542 (2017), 210-214.
doi: 10.1038/nature20817.
|
[11]
|
D. Chi, S.-H. Choi and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703.
doi: 10.1063/1.4878117.
|
[12]
|
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287.
|
[13]
|
S.-H. Choi and S.-Y Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.
doi: 10.1137/140961699.
|
[14]
|
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.
|
[15]
|
D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Phys. D, 226 (2007), 181-196.
doi: 10.1016/j.physd.2006.12.004.
|
[16]
|
T. Danino, O. Mondragon-Palomino, L. Tsimring and J. Hasty, A synchronized quorum of genetic clocks, Nature, 463 (2010), 326-330.
doi: 10.1038/nature08753.
|
[17]
|
P. Degond, A. Frouvelle and S. Merino-Aceituno, A new flocking model through body attitude coordination, Math. Models Methods Appl. Sci., 27 (2017), 1005-1049.
doi: 10.1142/S0218202517400085.
|
[18]
|
P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods Appl. Anal., 20 (2013), 89-114.
doi: 10.4310/MAA.2013.v20.n2.a1.
|
[19]
|
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005.
|
[20]
|
J. Duan, Y. Kuang and H. Tang, Model reduction of a two-dimensional kinetic swarming model by operator projections, East Asian J. Appl. Math., 8 (2018), 151-180.
doi: 10.4208/eajam.170617.141117a.
|
[21]
|
Y. Fan, J. Koellermeiner, J. Li, R. Li and M. Torrilhon, Model reduction of kinetic equations by operator projection, J. Stat. Phys., 162 (2016), 457-486.
doi: 10.1007/s10955-015-1384-9.
|
[22]
|
A. Frouvelle and J.-G. Liu, Long-time dynamics for a simple aggregation equation on the sphere, Springer Proc. Math. Stat., 282 Springer, Cham, 2019,457–479.
doi: 10.1007/978-3-030-15096-9_16.
|
[23]
|
I. M. Gamba and M.-J. Kang, Global weak solutions for Kolmogorov-Vicsek type equations with orientational interactions, Arch. Rational Mech. Anal., 222, (2016), 317-–342.
doi: 10.1007/s00205-016-1002-2.
|
[24]
|
T. Gregor, K. Fujimoto, N. Masaki and S. Sawai, The onset of collective behavior in social amoebae, Science, 328 (2010), 1021-1025.
doi: 10.1126/science.1183415.
|
[25]
|
S.-Y. Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global optimization algorithm, Math. Models Methods Appl. Sci., 30 (2020), 2417-2444.
doi: 10.1142/S0218202520500463.
|
[26]
|
S.-Y. Ha, D. Kim, J. Lee and S. E. No, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.
doi: 10.1007/s10955-018-2169-8.
|
[27]
|
S.-Y. Ha, D. Ko and S. W. Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys., 168 (2017), 171-207.
doi: 10.1007/s10955-017-1797-8.
|
[28]
|
S.-M. Hung and S. N. Givigi, A Q-learning approach to flocking with UAVs in a stochastic environment, IEEE Trans. Cybern., 47 (2017), 186-197.
doi: 10.1109/TCYB.2015.2509646.
|
[29]
|
D. Kim and J. Kim, Stochastic Lohe matrix model on the Lie group and mean-field limit, J. Stat. Phys., 178 (2020), 1467-1514.
doi: 10.1007/s10955-020-02516-0.
|
[30]
|
J. Koellermeier and M. Torrilhon, Numerical study of partially conservative moment equations in kinetic theory, Commun. Comput. Phys., 21 (2017), 981-1011.
doi: 10.4208/cicp.OA-2016-0053.
|
[31]
|
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Mathematical Physics., Lecture Notes in Theoretical Physics 39 1975,420–422.
doi: 10.1007/BFb0013365.
|
[32]
|
M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101.
doi: 10.1088/1751-8113/42/39/395101.
|
[33]
|
M. A. Lohe, Higher-dimensional generalizations of the Watanabe-Strogatz transform for vector models of synchronization, J. Phys. A, 51 (2018), 225101, 24 pp.
doi: 10.1088/1751-8121/aac030.
|
[34]
|
M. A. Lohe, On the double sphere model of synchronization, Phys. D, 412 (2020), 132642, 13 pp.
doi: 10.1016/j.physd.2020.132642.
|
[35]
|
J. Markdahl and J. Gonçalves, Global convergence properties of a consensus protocol on the $n$-sphere, 2016 55th IEEE Conference on Decision and Control (CDC), (2016), pp. 2487–2492.
doi: 10.1109/CDC.2016.7798792.
|
[36]
|
J. Markdahl, J. Thunberg and J. Gonçalves, Almost global consensus on the $n$-sphere, IEEE Trans. Automat. Control, 63 (2018), 1664-1675.
doi: 10.1109/TAC.2017.2752799.
|
[37]
|
J. Markdahl, D. Proverbio and J. Gonçalves, Robust synchronization of heterogeneous robot swarms on the sphere, 2020 59th IEEE Conference on Decision and Control (CDC), (2020), pp. 5798–5803.
doi: 10.1109/CDC42340.2020.9304268.
|
[38]
|
R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, 2006 45th IEEE Conference on Decision and Control (CDC), (2006), pp. 5060–5066.
doi: 10.1109/CDC.2006.376811.
|
[39]
|
R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51 (2006), 401-420.
doi: 10.1109/TAC.2005.864190.
|
[40]
|
L. Perea, G. Gomez and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control, 32 (2009), 527-537.
doi: 10.2514/1.36269.
|
[41]
|
L. M. Ritchie, M. A. Lohe and A. G. Williams, Synchronization of relativistic particles in the hyperbolic Kuramoto model, Chaos, 28 (2018), 053116.
doi: 10.1063/1.5021701.
|
[42]
|
M. Rubenstein, A. Cornejo and R. Nagapal, Programmable self-assembly in a thousand-robot swarm, Science, 345 (2014), 795-799.
doi: 10.1126/science.1254295.
|
[43]
|
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.
|
[44]
|
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.
doi: 10.1016/0022-5193(67)90051-3.
|
[45]
|
J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Phys. Lett. A, 377 (2013), 2939-2943.
doi: 10.1016/j.physleta.2013.09.010.
|
[46]
|
J. Zhu, J. Zhu and C. Qian, On equilibria and consensus of the Lohe model with identical oscillators, SIAM J. Appl. Dyn. Syst., 17 (2018), 1716-1741.
doi: 10.1137/17M112765X.
|