doi: 10.3934/dcdsb.2021154

Gaussian invariant measures and stationary solutions of 2D primitive equations

Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italia

* Corresponding author: Francesco Grotto

Received  May 2020 Revised  December 2020 Published  June 2021

We introduce a Gaussian measure formally preserved by the 2-dimensional Primitive Equations driven by additive Gaussian noise. Under such measure the stochastic equations under consideration are singular: we propose a solution theory based on the techniques developed by Gubinelli and Jara in [15] for a hyperviscous version of the equations.

Citation: Francesco Grotto, Umberto Pappalettera. Gaussian invariant measures and stationary solutions of 2D primitive equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021154
References:
[1]

S. Albeverio and B. Ferrario, Uniqueness of solutions of the stochastic Navier-Stokes equation with invariant measure given by the enstrophy, Ann. Probab., 32 (2004), 1632-1649.  doi: 10.1214/009117904000000379.  Google Scholar

[2]

L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: Regularity, duality and uniqueness, Electron. J. Probab., 24 (2019), Paper No. 136, 72 pp. doi: 10.1214/19-ejp379.  Google Scholar

[3]

D. BreschA. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36 (2004/05), 796-814.  doi: 10.1137/S0036141003422242.  Google Scholar

[4]

A. B. Cruzeiro, Équations différentielles ordinaires: Non explosion et mesures quasi-invariantes, J. Funct. Anal., 54 (1983), 193-205.  doi: 10.1016/0022-1236(83)90054-X.  Google Scholar

[5]

G. Da Prato and A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196 (2002), 180-210.  doi: 10.1006/jfan.2002.3919.  Google Scholar

[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, volume 152 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, second edition, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[7]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[8]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[9]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, volume 2015 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010, École d'Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. doi: 10.1007/978-3-642-18231-0.  Google Scholar

[10]

H. Gao and C. Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions, Commun. Math. Sci., 10 (2012), 575-593.  doi: 10.4310/CMS.2012.v10.n2.a8.  Google Scholar

[11]

H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[12]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[13]

N. Glatt-Holtz and R. Temam, Pathwise solutions of the 2-D stochastic primitive equations, Appl. Math. Optim., 63 (2011), 401-433.  doi: 10.1007/s00245-010-9126-5.  Google Scholar

[14]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 801-822.  doi: 10.3934/dcdsb.2008.10.801.  Google Scholar

[15]

M. Gubinelli and M. Jara, Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 325-350.  doi: 10.1007/s40072-013-0011-5.  Google Scholar

[16]

M. Gubinelli and M. Turra, Hyperviscous stochastic Navier-Stokes equations with white noise invariant measure, Stoch. Dyn., 20 (2020), 2040005, 39pp. doi: 10.1142/S0219493720400055.  Google Scholar

[17]

M. Gubinelli and N. Perkowski, The infinitesimal generator of the stochastic Burgers equation, Probab. Theory Related Fields, 178 (2020), 1067-1124.  doi: 10.1007/s00440-020-00996-5.  Google Scholar

[18]

A. Hussein, Partial and full hyper-viscosity for navier-stokes and primitive equations, Journal of Differential Equations, 269 (2020), 3003-3030.  doi: 10.1016/j.jde.2020.02.019.  Google Scholar

[19]

O. A. Ladyženskaya, On the nonstationary navier-stokes equations, Vestnik Leningrad. Univ., 13 (1958), 9-18.   Google Scholar

[20]

P. H. Lauritzen, Ch. Jablonowski, M. A. Taylor and R. D. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-11640-7.  Google Scholar

[21]

J.-L. Lions, R. Temam, and S. Wang, Models for the coupled atmosphere and ocean. (CAO Ⅰ, Ⅱ), Comput. Mech. Adv., 1 (1993), 120pp.  Google Scholar

[22]

J.-L. Lions, Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires, Bulletin de la Société Mathématique de France, 87 (1959), 245-273.   Google Scholar

[23]

J.-L. LionsR. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.   Google Scholar

[24]

J.-L. LionsR. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.   Google Scholar

[25]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271.  doi: 10.1007/s00205-011-0485-0.  Google Scholar

[26]

D. Nualart, The Malliavin calculus and related topics, Probability and its Applications (New York). Springer-Verlag, Berlin, second edition, 2006.  Google Scholar

[27]

M. PetcuR. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions, Commun. Pure Appl. Anal., 3 (2004), 115-131.  doi: 10.3934/cpaa.2004.3.115.  Google Scholar

[28]

C. SunH. Gao and M. Li, Large deviation for the stochastic 2D primitive equations with additive Lévy noise, Commun. Math. Sci., 16 (2018), 165-184.  doi: 10.4310/CMS.2018.v16.n1.a8.  Google Scholar

[29]

T. Tachim Medjo, The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 177-197.  doi: 10.3934/dcdsb.2010.14.177.  Google Scholar

show all references

References:
[1]

S. Albeverio and B. Ferrario, Uniqueness of solutions of the stochastic Navier-Stokes equation with invariant measure given by the enstrophy, Ann. Probab., 32 (2004), 1632-1649.  doi: 10.1214/009117904000000379.  Google Scholar

[2]

L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: Regularity, duality and uniqueness, Electron. J. Probab., 24 (2019), Paper No. 136, 72 pp. doi: 10.1214/19-ejp379.  Google Scholar

[3]

D. BreschA. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36 (2004/05), 796-814.  doi: 10.1137/S0036141003422242.  Google Scholar

[4]

A. B. Cruzeiro, Équations différentielles ordinaires: Non explosion et mesures quasi-invariantes, J. Funct. Anal., 54 (1983), 193-205.  doi: 10.1016/0022-1236(83)90054-X.  Google Scholar

[5]

G. Da Prato and A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196 (2002), 180-210.  doi: 10.1006/jfan.2002.3919.  Google Scholar

[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, volume 152 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, second edition, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[7]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[8]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[9]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, volume 2015 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010, École d'Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. doi: 10.1007/978-3-642-18231-0.  Google Scholar

[10]

H. Gao and C. Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions, Commun. Math. Sci., 10 (2012), 575-593.  doi: 10.4310/CMS.2012.v10.n2.a8.  Google Scholar

[11]

H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[12]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[13]

N. Glatt-Holtz and R. Temam, Pathwise solutions of the 2-D stochastic primitive equations, Appl. Math. Optim., 63 (2011), 401-433.  doi: 10.1007/s00245-010-9126-5.  Google Scholar

[14]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 801-822.  doi: 10.3934/dcdsb.2008.10.801.  Google Scholar

[15]

M. Gubinelli and M. Jara, Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 325-350.  doi: 10.1007/s40072-013-0011-5.  Google Scholar

[16]

M. Gubinelli and M. Turra, Hyperviscous stochastic Navier-Stokes equations with white noise invariant measure, Stoch. Dyn., 20 (2020), 2040005, 39pp. doi: 10.1142/S0219493720400055.  Google Scholar

[17]

M. Gubinelli and N. Perkowski, The infinitesimal generator of the stochastic Burgers equation, Probab. Theory Related Fields, 178 (2020), 1067-1124.  doi: 10.1007/s00440-020-00996-5.  Google Scholar

[18]

A. Hussein, Partial and full hyper-viscosity for navier-stokes and primitive equations, Journal of Differential Equations, 269 (2020), 3003-3030.  doi: 10.1016/j.jde.2020.02.019.  Google Scholar

[19]

O. A. Ladyženskaya, On the nonstationary navier-stokes equations, Vestnik Leningrad. Univ., 13 (1958), 9-18.   Google Scholar

[20]

P. H. Lauritzen, Ch. Jablonowski, M. A. Taylor and R. D. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-11640-7.  Google Scholar

[21]

J.-L. Lions, R. Temam, and S. Wang, Models for the coupled atmosphere and ocean. (CAO Ⅰ, Ⅱ), Comput. Mech. Adv., 1 (1993), 120pp.  Google Scholar

[22]

J.-L. Lions, Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires, Bulletin de la Société Mathématique de France, 87 (1959), 245-273.   Google Scholar

[23]

J.-L. LionsR. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.   Google Scholar

[24]

J.-L. LionsR. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.   Google Scholar

[25]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271.  doi: 10.1007/s00205-011-0485-0.  Google Scholar

[26]

D. Nualart, The Malliavin calculus and related topics, Probability and its Applications (New York). Springer-Verlag, Berlin, second edition, 2006.  Google Scholar

[27]

M. PetcuR. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions, Commun. Pure Appl. Anal., 3 (2004), 115-131.  doi: 10.3934/cpaa.2004.3.115.  Google Scholar

[28]

C. SunH. Gao and M. Li, Large deviation for the stochastic 2D primitive equations with additive Lévy noise, Commun. Math. Sci., 16 (2018), 165-184.  doi: 10.4310/CMS.2018.v16.n1.a8.  Google Scholar

[29]

T. Tachim Medjo, The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 177-197.  doi: 10.3934/dcdsb.2010.14.177.  Google Scholar

[1]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[2]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

[3]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[4]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[5]

T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 177-197. doi: 10.3934/dcdsb.2010.14.177

[6]

Nathan Glatt-Holtz, Mohammed Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 801-822. doi: 10.3934/dcdsb.2008.10.801

[7]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[8]

Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074

[9]

Alexis Arnaudon, So Takao. Networks of coadjoint orbits: From geometric to statistical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 447-485. doi: 10.3934/jgm.2019023

[10]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[11]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[12]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[13]

Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880

[14]

Roger Temam, D. Wirosoetisno. Exponential approximations for the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 425-440. doi: 10.3934/dcdsb.2007.7.425

[15]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[16]

Abhishake Rastogi. Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4111-4126. doi: 10.3934/cpaa.2020183

[17]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[18]

Syed M. Assad, Chjan C. Lim. Statistical equilibrium of the Coulomb/vortex gas on the unbounded 2-dimensional plane. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 1-14. doi: 10.3934/dcdsb.2005.5.1

[19]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4485-4513. doi: 10.3934/dcds.2021045

[20]

T. Tachim Medjo. Robust control problems for primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 769-788. doi: 10.3934/dcdsb.2011.15.769

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (11)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]