
Previous Article
Homogenization for stochastic reactiondiffusion equations with singular perturbation term
 DCDSB Home
 This Issue

Next Article
The eigenvalue problem for a class of degenerate operators related to the normalized $ p $Laplacian
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Corrigendum: On the Abel differential equations of third kind
1.  Departamento de Matemática, ICMCUniversidade de São Paulo, Avenida Trabalhador Sãocarlense, 40013566590, São Carlos, SP, Brazil 
2.  Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049–001, Lisboa, Portugal 
In this paper, using the Poincaré compactification technique we classify the topological phase portraits of a special kind of quadratic differential system, the Abel quadratic equations of third kind. In [
References:
[1] 
R. Oliveira and C. Valls, On the Abel differential equations of third kind, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 18211834. doi: 10.3934/dcdsb.2020004. Google Scholar 
show all references
References:
[1] 
R. Oliveira and C. Valls, On the Abel differential equations of third kind, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 18211834. doi: 10.3934/dcdsb.2020004. Google Scholar 
[1] 
Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 387395. doi: 10.3934/dcds.2007.17.387 
[2] 
Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 121131. doi: 10.3934/dcdsb.2016.21.121 
[3] 
Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725742. doi: 10.3934/cpaa.2009.8.725 
[4] 
Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure & Applied Analysis, 2015, 14 (3) : 10731095. doi: 10.3934/cpaa.2015.14.1073 
[5] 
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 10531065. doi: 10.3934/cpaa.2009.8.1053 
[6] 
M. A. M. Alwash. Polynomial differential equations with small coefficients. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 11291141. doi: 10.3934/dcds.2009.25.1129 
[7] 
Primitivo B. AcostaHumánez, J. Tomás Lázaro, Juan J. MoralesRuiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of PicardVessiot theory. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 17671800. doi: 10.3934/dcds.2015.35.1767 
[8] 
Isaac A. García, Jaume Giné. Nonalgebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 755768. doi: 10.3934/dcds.2004.10.755 
[9] 
Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309323. doi: 10.3934/jcd.2021013 
[10] 
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semihomogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 809828. doi: 10.3934/dcds.2000.6.809 
[11] 
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 75113. doi: 10.3934/dcds.2019004 
[12] 
Regilene Oliveira, Cláudia Valls. On the Abel differential equations of third kind. Discrete & Continuous Dynamical Systems  B, 2020, 25 (5) : 18211834. doi: 10.3934/dcdsb.2020004 
[13] 
Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 52855315. doi: 10.3934/dcds.2015.35.5285 
[14] 
Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 24752485. doi: 10.3934/dcdsb.2018070 
[15] 
Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems  B, 2015, 20 (8) : 26572661. doi: 10.3934/dcdsb.2015.20.2657 
[16] 
László Mérai, Igor E. Shparlinski. Unlikely intersections over finite fields: Polynomial orbits in small subgroups. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 10651073. doi: 10.3934/dcds.2020070 
[17] 
Luis Silvestre. Hölder continuity for integrodifferential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 10691081. doi: 10.3934/dcds.2010.28.1069 
[18] 
Ricardo M. Martins, Otávio M. L. Gomide. Limit cycles for quadratic and cubic planar differential equations under polynomial perturbations of small degree. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 33533386. doi: 10.3934/dcds.2017142 
[19] 
KunPeng Jin, Jin Liang, TiJun Xiao. Uniform polynomial stability of second order integrodifferential equations in Hilbert spaces with positive definite kernels. Discrete & Continuous Dynamical Systems  S, 2021, 14 (9) : 31413166. doi: 10.3934/dcdss.2021077 
[20] 
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603619. doi: 10.3934/eect.2019028 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]