doi: 10.3934/dcdsb.2021164
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the mean field limit for Cucker-Smale models

1. 

Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Via dei Taurini, 19, 00185, Rome, Italy

2. 

CNRS & LJLL Sorbonne Université, 4, place Jussieu, 75005 Paris, France

* Corresponding author: Roberto Natalini

Received  March 2021 Early access June 2021

In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [13]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [9] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.

Citation: Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021164
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second Edition, Lectures in Mathematics ETH Zürich. Birlhäuser Verlag, Berlin, 2008.  Google Scholar

[2]

F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-lipschitz forces & swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.  Google Scholar

[3]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[4]

F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[5]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[6]

E. Di CostanzoM. MenciE. MessinaR. Natalini and A. Vecchio, A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 443-472.  doi: 10.3934/dcdsb.2019189.  Google Scholar

[7]

R. L. Dobrušin, Vlasov equations, (Russian), Funktsional. Anal. i Prilozhen, 13 (1979), 48-58.   Google Scholar

[8]

F. GolseC. Mouhot and V. Ricci, Empirical measures and Vlasov hierarchies, Kinet. Relat. Models, 6 (2013), 919-943.  doi: 10.3934/krm.2013.6.919.  Google Scholar

[9]

F. GolseC. Mouhot and T. Paul, On the mean field and classical limits of quantum mechanics, Comm. Math. Phys., 343 (2016), 165-205.  doi: 10.1007/s00220-015-2485-7.  Google Scholar

[10]

F. GolseT. Paul and M. Pulvirenti, On the derivation of the Hartree equation from the $N$-body Schrödinger equation: Uniformity in the Planck constant, J. Funct. Anal., 275 (2018), 1603-1649.  doi: 10.1016/j.jfa.2018.06.008.  Google Scholar

[11]

S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.  Google Scholar

[12]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[13]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[14]

P.-E. Jabin and Z. Wang, Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal., 271 (2016), 3588-3627.  doi: 10.1016/j.jfa.2016.09.014.  Google Scholar

[15]

P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with $W{-1, \infty}$ kernels, Invent. Math., 214 (2018), 523-591.  doi: 10.1007/s00222-018-0808-y.  Google Scholar

[16]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.  doi: 10.1137/140996501.  Google Scholar

[17]

A.-S. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flour XIX–-1989, Lecture Notes in Math. 1464, Springer, Berlin, 1991,165–251. doi: 10.1007/BFb0085169.  Google Scholar

[18]

C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence (RI), 2003. doi: 10.1090/gsm/058.  Google Scholar

[19]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second Edition, Lectures in Mathematics ETH Zürich. Birlhäuser Verlag, Berlin, 2008.  Google Scholar

[2]

F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-lipschitz forces & swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.  Google Scholar

[3]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[4]

F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[5]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[6]

E. Di CostanzoM. MenciE. MessinaR. Natalini and A. Vecchio, A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 443-472.  doi: 10.3934/dcdsb.2019189.  Google Scholar

[7]

R. L. Dobrušin, Vlasov equations, (Russian), Funktsional. Anal. i Prilozhen, 13 (1979), 48-58.   Google Scholar

[8]

F. GolseC. Mouhot and V. Ricci, Empirical measures and Vlasov hierarchies, Kinet. Relat. Models, 6 (2013), 919-943.  doi: 10.3934/krm.2013.6.919.  Google Scholar

[9]

F. GolseC. Mouhot and T. Paul, On the mean field and classical limits of quantum mechanics, Comm. Math. Phys., 343 (2016), 165-205.  doi: 10.1007/s00220-015-2485-7.  Google Scholar

[10]

F. GolseT. Paul and M. Pulvirenti, On the derivation of the Hartree equation from the $N$-body Schrödinger equation: Uniformity in the Planck constant, J. Funct. Anal., 275 (2018), 1603-1649.  doi: 10.1016/j.jfa.2018.06.008.  Google Scholar

[11]

S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.  Google Scholar

[12]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[13]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[14]

P.-E. Jabin and Z. Wang, Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal., 271 (2016), 3588-3627.  doi: 10.1016/j.jfa.2016.09.014.  Google Scholar

[15]

P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with $W{-1, \infty}$ kernels, Invent. Math., 214 (2018), 523-591.  doi: 10.1007/s00222-018-0808-y.  Google Scholar

[16]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.  doi: 10.1137/140996501.  Google Scholar

[17]

A.-S. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flour XIX–-1989, Lecture Notes in Math. 1464, Springer, Berlin, 1991,165–251. doi: 10.1007/BFb0085169.  Google Scholar

[18]

C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence (RI), 2003. doi: 10.1090/gsm/058.  Google Scholar

[19]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[2]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[3]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[4]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[5]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[6]

Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic & Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026

[7]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[8]

Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic & Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008

[9]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[10]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[11]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[12]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

[13]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[14]

Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic & Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027

[15]

Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253

[16]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[17]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[18]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[19]

Moon-Jin Kang, Seung-Yeal Ha, Jeongho Kim, Woojoo Shim. Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1233-1256. doi: 10.3934/cpaa.2020057

[20]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

2020 Impact Factor: 1.327

Article outline

[Back to Top]