-
Previous Article
Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights
- DCDS-B Home
- This Issue
- Next Article
The Lewy-Stampacchia inequality for the fractional Laplacian and its application to anomalous unidirectional diffusion equations
1. | Department of Mathematics, National Taiwan University, Taipei 106 |
2. | Faculty of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa 920-1192 |
In this paper, we consider a Lewy-Stampacchia-type inequality for the fractional Laplacian on a bounded domain in Euclidean space. Using this inequality, we can show the well-posedness of fractional-type anomalous unidirectional diffusion equations. This study is an extension of the work by Akagi-Kimura (2019) for the standard Laplacian. However, there exist several difficulties due to the nonlocal feature of the fractional Laplacian. We overcome those difficulties employing the Caffarelli-Silvestre extension of the fractional Laplacian.
References:
[1] |
M. Ainsworth and C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, in Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, 1, Springer, Cham, 2018, 17-57, arXiv: 1708.01923. |
[2] |
G. Akagi and M. Kimura, Unidirectional evolution equations of diffusion type, J. Differential Equations, 266 (2019), 1-43.
doi: 10.1016/j.jde.2018.05.022. |
[3] |
H. Antil and C. Rautenberg, Fractional elliptic quasi-variational inequalities: Theory and numerics, Interfaces Free Bound., 20 (2018), 1-24.
doi: 10.4171/IFB/395. |
[4] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
doi: 10.1007/978-0-387-70914-7. |
[5] |
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, (French) [Maximal monotone operators and semi-groups of contractions in Hilbert
spaces], North-Holland Mathematics Studies, 5, Notas de Matemática, 50, North-Holland
Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1973.
doi: 10.1016/s0304-0208(08)x7125-7. |
[6] |
S. N. Chandler-Wilde, D. P. Hewett and A. Moiola, Sobolev spaces on non-Lipschitz subsets of $\mathbb{R}^{n}$ with application to boundary integral equations on fractal screens, Integral Equations Operator Theory, 87 (2017), 179-224.
doi: 10.1007/s00020-017-2342-5. |
[7] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719208. |
[8] |
L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[9] |
L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.
doi: 10.1016/j.anihpc.2015.01.004. |
[10] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[11] |
S. Duo, H. W. van Wyk and Y. Zhang,
A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355 (2018), 233-252.
doi: 10.1016/j.jcp.2017.11.011. |
[12] |
S. Duo, H. Wang and Y. Zhang,
A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 231-256.
doi: 10.3934/dcdsb.2018110. |
[13] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/gsm/019. |
[14] |
G. Grubb,
Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Adv. Math., 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018. |
[15] |
B. Gustafsson,
A simple proof of the regularity theorem for the variational inequality of the obstacle problem, Nonlinear Anal., 10 (1986), 1487-1490.
doi: 10.1016/0362-546X(86)90119-7. |
[16] |
R. Klages, G. Radons and I. M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
doi: 10.1002/9783527622979. |
[17] |
D. Kinderlehrerand and G. Stampacchia, An Introduction to Variational Inequalities and
Their Applications, Pure and Applied Mathematics, 88, Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], New York-London, 1980.
doi: 10.1137/1.9780898719451. |
[18] |
M. Kwaśnicki,
Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.
doi: 10.1515/fca-2017-0002. |
[19] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, 1, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 181, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65161-8. |
[20] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, 2, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 182, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65217-2. |
[21] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, 3, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 183, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65393-3. |
[22] |
C. W. K. Lo and J. F. Rodrigues, On a class of fractional obstacle type problems related to the distributional Riesz derivative, preprint, arXiv: 2101.06863. |
[23] |
H. Lewy and G. Stampacchia,
On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), 153-188.
doi: 10.1002/cpa.3160220203. |
[24] |
W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press. Cambridge, 2000. |
[25] |
S. E. Mikhailov,
Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.
doi: 10.1016/j.jmaa.2010.12.027. |
[26] |
R. Musina and A. I. Nazarov,
On fractional Laplacians, Comm. Partial Differential Equations, 39 (2014), 1780-1790.
doi: 10.1080/03605302.2013.864304. |
[27] |
R. Musina and A. I. Nazarov,
On fractional Laplacians - 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1667-1673.
doi: 10.1016/j.anihpc.2015.08.001. |
[28] |
R. Musina and A. I. Nazarov, Variational inequalities for the spectral fractional Laplacian, Comput. Math. Math. Phys., 57 (2017), 373-386.
doi: 10.1134/S0965542517030113. |
[29] |
R. Musina, A. I. Nazarov and K. Sreenadh, Variational inequalities for the fractional Laplacian, Potential Anal., 46 (2017), 485-498.
doi: 10.1007/s11118-016-9591-9. |
[30] |
R. H. Nochetto, E. Otárola and A. J. Salgado,
A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.
doi: 10.1007/s10208-014-9208-x. |
[31] |
A. Rüland,
Unique continuation for fractional Schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.
doi: 10.1080/03605302.2014.905594. |
[32] |
A. Rüland and J.-N. Wang,
On the Fractional Landis Conjecture, J. Funct. Anal., 277 (2019), 3236-3270.
doi: 10.1016/j.jfa.2019.05.026. |
[33] |
R. L. Schilling, An introduction to Lévy and Feller processes, in From Lévy-Type Processes to Parabolic SPDEs, by D. Khoshnevisan and R. Schilling (eds. F. Utzet and L. Quer-Sardanyons), 1-126, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2016.
doi: 10.1007/978-3-319-34120-0. |
[34] |
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/surv/049. |
[35] |
P. R. Stinga and J. L. Torrea,
Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[36] |
R. Servadei and E. Valdinoci,
Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.
doi: 10.4171/RMI/750. |
[37] |
M. Warma,
The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.
doi: 10.1007/s11118-014-9443-4. |
[38] |
K. Yosida, Functional Analysis, 6$^{th}$ edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123. Springer-Verlag, Berlin-New York, 1980.
doi: 10.1007/978-3-642-61859-8. |
show all references
References:
[1] |
M. Ainsworth and C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, in Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, 1, Springer, Cham, 2018, 17-57, arXiv: 1708.01923. |
[2] |
G. Akagi and M. Kimura, Unidirectional evolution equations of diffusion type, J. Differential Equations, 266 (2019), 1-43.
doi: 10.1016/j.jde.2018.05.022. |
[3] |
H. Antil and C. Rautenberg, Fractional elliptic quasi-variational inequalities: Theory and numerics, Interfaces Free Bound., 20 (2018), 1-24.
doi: 10.4171/IFB/395. |
[4] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
doi: 10.1007/978-0-387-70914-7. |
[5] |
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, (French) [Maximal monotone operators and semi-groups of contractions in Hilbert
spaces], North-Holland Mathematics Studies, 5, Notas de Matemática, 50, North-Holland
Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1973.
doi: 10.1016/s0304-0208(08)x7125-7. |
[6] |
S. N. Chandler-Wilde, D. P. Hewett and A. Moiola, Sobolev spaces on non-Lipschitz subsets of $\mathbb{R}^{n}$ with application to boundary integral equations on fractal screens, Integral Equations Operator Theory, 87 (2017), 179-224.
doi: 10.1007/s00020-017-2342-5. |
[7] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719208. |
[8] |
L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[9] |
L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.
doi: 10.1016/j.anihpc.2015.01.004. |
[10] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[11] |
S. Duo, H. W. van Wyk and Y. Zhang,
A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355 (2018), 233-252.
doi: 10.1016/j.jcp.2017.11.011. |
[12] |
S. Duo, H. Wang and Y. Zhang,
A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 231-256.
doi: 10.3934/dcdsb.2018110. |
[13] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/gsm/019. |
[14] |
G. Grubb,
Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Adv. Math., 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018. |
[15] |
B. Gustafsson,
A simple proof of the regularity theorem for the variational inequality of the obstacle problem, Nonlinear Anal., 10 (1986), 1487-1490.
doi: 10.1016/0362-546X(86)90119-7. |
[16] |
R. Klages, G. Radons and I. M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
doi: 10.1002/9783527622979. |
[17] |
D. Kinderlehrerand and G. Stampacchia, An Introduction to Variational Inequalities and
Their Applications, Pure and Applied Mathematics, 88, Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], New York-London, 1980.
doi: 10.1137/1.9780898719451. |
[18] |
M. Kwaśnicki,
Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.
doi: 10.1515/fca-2017-0002. |
[19] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, 1, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 181, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65161-8. |
[20] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, 2, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 182, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65217-2. |
[21] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, 3, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 183, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65393-3. |
[22] |
C. W. K. Lo and J. F. Rodrigues, On a class of fractional obstacle type problems related to the distributional Riesz derivative, preprint, arXiv: 2101.06863. |
[23] |
H. Lewy and G. Stampacchia,
On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), 153-188.
doi: 10.1002/cpa.3160220203. |
[24] |
W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press. Cambridge, 2000. |
[25] |
S. E. Mikhailov,
Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.
doi: 10.1016/j.jmaa.2010.12.027. |
[26] |
R. Musina and A. I. Nazarov,
On fractional Laplacians, Comm. Partial Differential Equations, 39 (2014), 1780-1790.
doi: 10.1080/03605302.2013.864304. |
[27] |
R. Musina and A. I. Nazarov,
On fractional Laplacians - 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1667-1673.
doi: 10.1016/j.anihpc.2015.08.001. |
[28] |
R. Musina and A. I. Nazarov, Variational inequalities for the spectral fractional Laplacian, Comput. Math. Math. Phys., 57 (2017), 373-386.
doi: 10.1134/S0965542517030113. |
[29] |
R. Musina, A. I. Nazarov and K. Sreenadh, Variational inequalities for the fractional Laplacian, Potential Anal., 46 (2017), 485-498.
doi: 10.1007/s11118-016-9591-9. |
[30] |
R. H. Nochetto, E. Otárola and A. J. Salgado,
A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.
doi: 10.1007/s10208-014-9208-x. |
[31] |
A. Rüland,
Unique continuation for fractional Schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.
doi: 10.1080/03605302.2014.905594. |
[32] |
A. Rüland and J.-N. Wang,
On the Fractional Landis Conjecture, J. Funct. Anal., 277 (2019), 3236-3270.
doi: 10.1016/j.jfa.2019.05.026. |
[33] |
R. L. Schilling, An introduction to Lévy and Feller processes, in From Lévy-Type Processes to Parabolic SPDEs, by D. Khoshnevisan and R. Schilling (eds. F. Utzet and L. Quer-Sardanyons), 1-126, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2016.
doi: 10.1007/978-3-319-34120-0. |
[34] |
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/surv/049. |
[35] |
P. R. Stinga and J. L. Torrea,
Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[36] |
R. Servadei and E. Valdinoci,
Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.
doi: 10.4171/RMI/750. |
[37] |
M. Warma,
The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.
doi: 10.1007/s11118-014-9443-4. |
[38] |
K. Yosida, Functional Analysis, 6$^{th}$ edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123. Springer-Verlag, Berlin-New York, 1980.
doi: 10.1007/978-3-642-61859-8. |
[1] |
Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110 |
[2] |
Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 |
[3] |
Dinh-Ke Tran, Tran-Phuong-Thuy Lam. Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evolution Equations and Control Theory, 2020, 9 (3) : 891-914. doi: 10.3934/eect.2020038 |
[4] |
José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure and Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85 |
[5] |
Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857 |
[6] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
[7] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure and Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[8] |
Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905 |
[9] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[10] |
Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738 |
[11] |
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173 |
[12] |
Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160 |
[13] |
Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 |
[14] |
Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523 |
[15] |
Dimitri Mugnai, Kanishka Perera, Edoardo Proietti Lippi. A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications. Communications on Pure and Applied Analysis, 2022, 21 (1) : 275-292. doi: 10.3934/cpaa.2021177 |
[16] |
Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 |
[17] |
Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064 |
[18] |
Nikolaos Roidos, Yuanzhen Shao. Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. Evolution Equations and Control Theory, 2022, 11 (3) : 793-825. doi: 10.3934/eect.2021026 |
[19] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[20] |
Fang Liu. The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2701-2720. doi: 10.3934/dcdsb.2021155 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]