doi: 10.3934/dcdsb.2021171

Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions

1. 

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina and IMAS-CONICET, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina

2. 

Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan María Gutiérrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina

3. 

Universidad de Chile - Departamento de Matemática, Facultad de Ciencias, Casilla 653, Santiago, Chile

* Corresponding author: Pablo Amster

Received  January 2021 Revised  April 2021 Published  June 2021

Fund Project: The first two authors were partially supported by projects 20020190100039BA UBACyT and PIP 11220130100006CO CONICET. The third author was supported by project Fondecyt 1170466

We consider the $ (\omega,Q) $-periodic problem for a system of delay differential equations, where $ Q $ is an invertible matrix. Existence and multiplicity of solutions is proven under different conditions that extend well-known results for the periodic case $ Q = I $ and anti-periodic case $ Q = -I $. In particular, the results apply to biological models with mixed terms of Nicholson, Lasota or Mackey type, and also vectorial versions of Nicholson or Mackey-Glass models.

Citation: Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021171
References:
[1]

S. Abbas, S. Dhama, M. Pinto and D. Sepúlveda, Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type, Journal of Mathematical Analysis and Applications, 495 (2021), 124722, 22 pp. doi: 10.1016/j.jmaa.2020.124722.  Google Scholar

[2]

M. AgaogluM. Feckan and A. Panagiotidon, Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dyn Systems and Diff. Eqs., 10 (2020), 149-166.  doi: 10.1504/IJDSDE.2020.106027.  Google Scholar

[3]

E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)$-Pseudo periodic functions, first order Cauchy Problem and Lasota-Wazewska model, Bound. Value Prob., 2019 (2019), Paper No. 106, 20 pp. doi: 10.1186/s13661-019-1217-x.  Google Scholar

[4]

E. AlvarezS. Castillo and M. Pinto, Asymptotically $(\omega, c)$-periodic first-order Cauchy problem and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.  doi: 10.1002/mma.5880.  Google Scholar

[5]

E. Alvarez, S. Díaz and C. Lizama, On the existence and uniqueness of $(N, \lambda)$-periodic solutions to a class of Volterra difference equations, Advances in Difference Equations, 2019 (2019), Art 105, 12pp. doi: 10.1186/s13662-019-2053-0.  Google Scholar

[6]

E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro differential equations, Electr.J. Qual. Th. Differ. Equ., 2018 (2018), Paper No. 16, 8 pp. doi: 10.14232/ejqtde.2018.1.16.  Google Scholar

[7]

P. AmsterM. P. Kuna and G. Robledo, Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium, Communications on Pure and Applied Analysis, 18 (2019), 1695-1709.  doi: 10.3934/cpaa.2019080.  Google Scholar

[8]

X. Chang and Y. Liu, Rotating periodic solutions of second order dissipative dynamical systems, Disc. Cont. Dyn. Systems A, 36 (2016), 643-652.  doi: 10.3934/dcds.2016.36.643.  Google Scholar

[9]

T. Faria, Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems, Journal of Differential Equations, 263 (2017), 509-533.  doi: 10.1016/j.jde.2017.02.042.  Google Scholar

[10]

R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, 1977.  Google Scholar

[11]

P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations, Transactions of the American Mathematical Society, 96 (1960), 493-509.  doi: 10.1090/S0002-9947-1960-0124553-5.  Google Scholar

[12]

M. KhalladiM. KosticM. PintoA. Rahmani and D. Velinov, $c$-Almost periodic functions and applications, Nonautonomous Dynamical Systems, 7 (2020), 176-193.  doi: 10.1515/msds-2020-0111.  Google Scholar

[13]

M. Khalladi, M. Kostic, M. Pinto, A. Rahmani and D. Velinov, On Semi $c$-periodic functions, J. Math., 2021 (2021), Art. ID 6620625, 5 pp. doi: 10.1155/2021/6620625.  Google Scholar

[14]

E. Landesman and A. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1969/70), 609-623.   Google Scholar

[15]

G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics, 1978.  Google Scholar

[16]

M. LiJ. Wang and M. Feckan, $(\omega, c)$-periodic solutions for impulsive differential systems, Communicat. Math. Analysis, 21 (2018), 35-64.   Google Scholar

[17]

K. Liu, M. Feckan, D. O'Regan and J. Wang, $(\omega, c)$-periodic solutions for time-varying non-instantaneous impulsive differential systems, Applicable Analysis, 2021, 1895123. doi: 10.1080/00036811.2021.1895123.  Google Scholar

[18]

K. Liu, J. Wang, D. O'Regan and M. Feckan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential Equations, Mediterr. J. Math., 17 (2020), Paper No. 155, 22 pp. doi: 10.1007/s00009-020-01574-8.  Google Scholar

[19]

L. Nirenberg, Generalized degree and nonlinear problems, Contributions to Nonlinear Functional Analysis Academic Press, 1971, 1–9.  Google Scholar

[20]

R. Ortega and L. Sánchez, Periodic solutions of forced oscillators with several degrees of freedom, Bulletin of the London Mathematical Society, 34 (2002), 308-318.  doi: 10.1112/S0024609301008748.  Google Scholar

[21]

M. Pinto, Ergodicity and Oscillations, Conference, Universidad Católica del Norte, Antofagasta, Chile, 2014. Google Scholar

[22]

H. Schaefer, Über die methode der a priori-Schranken, Math. Ann., 129 (1955), 415-416.  doi: 10.1007/BF01362380.  Google Scholar

[23]

C. WangX. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain Journal of Mathematics, 46 (2016), 1717-1737.  doi: 10.1216/RMJ-2016-46-5-1717.  Google Scholar

[24]

Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstract and Applied Analysis, 2013 (2013), Art. ID 157140, 4pp. doi: 10.1155/2013/157140.  Google Scholar

show all references

References:
[1]

S. Abbas, S. Dhama, M. Pinto and D. Sepúlveda, Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type, Journal of Mathematical Analysis and Applications, 495 (2021), 124722, 22 pp. doi: 10.1016/j.jmaa.2020.124722.  Google Scholar

[2]

M. AgaogluM. Feckan and A. Panagiotidon, Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dyn Systems and Diff. Eqs., 10 (2020), 149-166.  doi: 10.1504/IJDSDE.2020.106027.  Google Scholar

[3]

E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)$-Pseudo periodic functions, first order Cauchy Problem and Lasota-Wazewska model, Bound. Value Prob., 2019 (2019), Paper No. 106, 20 pp. doi: 10.1186/s13661-019-1217-x.  Google Scholar

[4]

E. AlvarezS. Castillo and M. Pinto, Asymptotically $(\omega, c)$-periodic first-order Cauchy problem and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.  doi: 10.1002/mma.5880.  Google Scholar

[5]

E. Alvarez, S. Díaz and C. Lizama, On the existence and uniqueness of $(N, \lambda)$-periodic solutions to a class of Volterra difference equations, Advances in Difference Equations, 2019 (2019), Art 105, 12pp. doi: 10.1186/s13662-019-2053-0.  Google Scholar

[6]

E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro differential equations, Electr.J. Qual. Th. Differ. Equ., 2018 (2018), Paper No. 16, 8 pp. doi: 10.14232/ejqtde.2018.1.16.  Google Scholar

[7]

P. AmsterM. P. Kuna and G. Robledo, Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium, Communications on Pure and Applied Analysis, 18 (2019), 1695-1709.  doi: 10.3934/cpaa.2019080.  Google Scholar

[8]

X. Chang and Y. Liu, Rotating periodic solutions of second order dissipative dynamical systems, Disc. Cont. Dyn. Systems A, 36 (2016), 643-652.  doi: 10.3934/dcds.2016.36.643.  Google Scholar

[9]

T. Faria, Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems, Journal of Differential Equations, 263 (2017), 509-533.  doi: 10.1016/j.jde.2017.02.042.  Google Scholar

[10]

R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, 1977.  Google Scholar

[11]

P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations, Transactions of the American Mathematical Society, 96 (1960), 493-509.  doi: 10.1090/S0002-9947-1960-0124553-5.  Google Scholar

[12]

M. KhalladiM. KosticM. PintoA. Rahmani and D. Velinov, $c$-Almost periodic functions and applications, Nonautonomous Dynamical Systems, 7 (2020), 176-193.  doi: 10.1515/msds-2020-0111.  Google Scholar

[13]

M. Khalladi, M. Kostic, M. Pinto, A. Rahmani and D. Velinov, On Semi $c$-periodic functions, J. Math., 2021 (2021), Art. ID 6620625, 5 pp. doi: 10.1155/2021/6620625.  Google Scholar

[14]

E. Landesman and A. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1969/70), 609-623.   Google Scholar

[15]

G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics, 1978.  Google Scholar

[16]

M. LiJ. Wang and M. Feckan, $(\omega, c)$-periodic solutions for impulsive differential systems, Communicat. Math. Analysis, 21 (2018), 35-64.   Google Scholar

[17]

K. Liu, M. Feckan, D. O'Regan and J. Wang, $(\omega, c)$-periodic solutions for time-varying non-instantaneous impulsive differential systems, Applicable Analysis, 2021, 1895123. doi: 10.1080/00036811.2021.1895123.  Google Scholar

[18]

K. Liu, J. Wang, D. O'Regan and M. Feckan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential Equations, Mediterr. J. Math., 17 (2020), Paper No. 155, 22 pp. doi: 10.1007/s00009-020-01574-8.  Google Scholar

[19]

L. Nirenberg, Generalized degree and nonlinear problems, Contributions to Nonlinear Functional Analysis Academic Press, 1971, 1–9.  Google Scholar

[20]

R. Ortega and L. Sánchez, Periodic solutions of forced oscillators with several degrees of freedom, Bulletin of the London Mathematical Society, 34 (2002), 308-318.  doi: 10.1112/S0024609301008748.  Google Scholar

[21]

M. Pinto, Ergodicity and Oscillations, Conference, Universidad Católica del Norte, Antofagasta, Chile, 2014. Google Scholar

[22]

H. Schaefer, Über die methode der a priori-Schranken, Math. Ann., 129 (1955), 415-416.  doi: 10.1007/BF01362380.  Google Scholar

[23]

C. WangX. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain Journal of Mathematics, 46 (2016), 1717-1737.  doi: 10.1216/RMJ-2016-46-5-1717.  Google Scholar

[24]

Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstract and Applied Analysis, 2013 (2013), Art. ID 157140, 4pp. doi: 10.1155/2013/157140.  Google Scholar

[1]

Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123

[2]

Hongren Wang, Xue Yang, Yong Li, Xiaoyue Li. LaSalle type stationary oscillation theorems for Affine-Periodic Systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2907-2921. doi: 10.3934/dcdsb.2017156

[3]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[4]

Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373

[5]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[6]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[7]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[8]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[9]

Weigao Ge, Li Zhang. Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4925-4943. doi: 10.3934/dcds.2016013

[10]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[11]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[12]

Alexander Krasnosel'skii. Resonant forced oscillations in systems with periodic nonlinearities. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 239-254. doi: 10.3934/dcds.2013.33.239

[13]

Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affine-linear flows and control systems. Communications on Pure & Applied Analysis, 2011, 10 (3) : 847-857. doi: 10.3934/cpaa.2011.10.847

[14]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[15]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[16]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[17]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[18]

Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157

[19]

Diego Averna, Nikolaos S. Papageorgiou, Elisabetta Tornatore. Multiple solutions for nonlinear nonhomogeneous resonant coercive problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 155-178. doi: 10.3934/dcdss.2018010

[20]

Adriana Buică, Jean–Pierre Françoise, Jaume Llibre. Periodic solutions of nonlinear periodic differential systems with a small parameter. Communications on Pure & Applied Analysis, 2007, 6 (1) : 103-111. doi: 10.3934/cpaa.2007.6.103

2019 Impact Factor: 1.27

Article outline

[Back to Top]