[1]
|
L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez, Numerical simulation of air pollution due to traffic flow in urban networks, J. Comput. Appl. Math., 326 (2017), 44-61.
doi: 10.1016/j.cam.2017.05.017.
|
[2]
|
L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez, Optimal control of urban air pollution related to traffic flow in road networks, Math. Control Relat. F., 8 (2018), 177-193.
doi: 10.3934/mcrf.2018008.
|
[3]
|
R. Atkinson, Atmospheric chemistry of $\mathrm{VOC}s$ and $\mathrm{NO_x}$, Atmos. Environ., 34 (2000), 2063-2101.
doi: 10.1016/S1352-2310(99)00460-4.
|
[4]
|
R. Atkinson and W. P. L. Carter, Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev., 84 (1984), 437-470.
doi: 10.1021/cr00063a002.
|
[5]
|
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099.
|
[6]
|
M. Barth, F. An, T. Younglove, G. Scora, C. Levine, M. Ross and T. Wenzel, Development of a Comprehensive Modal Emissions Model: Final Report, Technical report, National Research Council, Transportation Research Board, National Cooperative Highway Research Program, NCHRP Project 25–11, 2000.
|
[7]
|
D. C. Carslaw, S. D. Beevers, J. E. Tate, E. J. Westmoreland and M. L. Williams, Recent evidence concerning higher $\mathrm {NO_x}$ emissions from passenger cars and light duty vehicles, Atmos. Environ., 45 (2011), 7053-7063.
doi: 10.1016/j.atmosenv.2011.09.063.
|
[8]
|
D. de la Fuente, J. M. Vega, F. Viejo, I. Díaz and M. Morcillo, Mapping air pollution effects on atmospheric degradation of cultural heritage, J. Cult. Herit., 14 (2013), 138-145.
doi: 10.1016/j.culher.2012.05.002.
|
[9]
|
European Environment Agency, Air Quality in Europe – 2019 Report, Technical Report, 2019.
|
[10]
|
S. Fan, M. Herty and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239.
|
[11]
|
S. Fan, Y. Sun, B. Piccoli, B. Seibold and D. B. Work, A collapsed generalized Aw-RascleZhang model and its model accuracy, arXiv preprint, arXiv: 1702.03624.
|
[12]
|
F. J. Fernández, L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez, Optimal location of green zones in metropolitan areas to control the urban heat island, J. Comput. Appl. Math., 289 (2015), 412-425.
doi: 10.1016/j.cam.2014.10.023.
|
[13]
|
M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, American Institute of Mathematical Sciences, 2016.
|
[14]
|
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algbraic Problem, Second edition, Springer Series in Computational Mathematics, 1996.
doi: 10.1007/978-3-642-05221-7.
|
[15]
|
D. J. Jacob, Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34 (2000), 2131-2159.
doi: 10.1016/S1352-2310(99)00462-8.
|
[16]
|
M. Z. Jacobson, Fundamentals of Atmospheric Modeling, Cambridge University Press, 2005.
doi: 10.1017/CBO9781139165389.
|
[17]
|
T. Koto, IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comput. Appl. Math., 215 (2008), 182-195.
doi: 10.1016/j.cam.2007.04.003.
|
[18]
|
J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Ltd., Chichester, 1991.
|
[19]
|
J.-P. Lebacque, S. Mammar and H. Haj-Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory, Elsevier, (2007), 755–776.
|
[20]
|
M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089.
|
[21]
|
T. Luspay, B. Kulcsar, I. Varga, S. K. Zegeye, B. De Schutter and M. Verhaegen, On acceleration of traffic flow, in Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010), IEEE, (2010), 741–746.
doi: 10.1109/ITSC.2010.5625204.
|
[22]
|
S. Manahan, Environmental Chemistry, CRC press, 2017.
doi: 10.1201/9781315160474.
|
[23]
|
H. Omidvarborna, A. Kumar and D.-S. Kim, $\mathrm{NO_x}$ emissions from low-temperature combustion of biodiesel made of various feedstocks and blends, Fuel Process. Technol., 140 (2015), 113-118.
doi: 10.1016/j.fuproc.2015.08.031.
|
[24]
|
L. I. Panis, S. Broekx and R. Liu, Modelling instantaneous traffic emission and the influence of traffic speed limits, Sci. Total Environ., 371 (2006), 270-285.
doi: 10.1016/j.scitotenv.2006.08.017.
|
[25]
|
B. Piccoli, K. Han, T. L. Friesz, T. Yao and J. Tang, Second-order models and traffic data from mobile sensors, Transp. Res. Part C: Emerg. Technol., 52 (2015), 32-56.
doi: 10.1016/j.trc.2014.12.013.
|
[26]
|
V. Ramanathan and Y. feng, Air pollution, greenhouse gases and climate change: {G}lobal and regional perspectives, Atmos. Environ., 43 (2009), 37-50.
doi: 10.1016/j.atmosenv.2008.09.063.
|
[27]
|
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42.
|
[28]
|
M. Rößler, T. Koch, C. Janzer and M. Olzmann, Mechanisms of the NO$_2$ formation in diesel engines, MTZ Worldw., 78 (2017), 70-75.
doi: 10.1007/s38313-017-0057-2.
|
[29]
|
S. Samaranayake, S. Glaser, D. Holstius, J. Monteil, K. Tracton, E. Seto and A. Bayen, RealTime estimation of pollution emissions and dispersion from highway traffic, Comput.-Aided Civ. Inf., 29 (2014), 546-558.
doi: 10.1111/mice.12078.
|
[30]
|
J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, 2016.
doi: 10.1063/1.882420.
|
[31]
|
R. Smit, L. Ntziachristos and P. Boulter, Validation of road vehicle and traffic emission models – A review and meta-analysis, Atmos. Environ., 44 (2010), 2943-2953.
doi: 10.1016/j.atmosenv.2010.05.022.
|
[32]
|
F. Song, J. Y. Shin, R. Jusino-Atresino and Y. Gao, Relationships among the springtime ground–level $\mathrm{NO_x}$, $\mathrm{O}_3$ and $\mathrm{NO_3}$ in the vicinity of highways in the US East Coast, Atmos. Pollut. Res., 2 (2011), 374-383.
doi: 10.5094/APR.2011.042.
|
[33]
|
B. Sportisse, Fundamentals in Air Pollution: From Processes to Modelling, Springer-Verlag, 2010.
|
[34]
|
J. M. Stockie, The mathematics of atmospheric dispersion modeling, SIAM Rev., 53 (2011), 349-372.
doi: 10.1137/10080991X.
|
[35]
|
J. Tidblad, K. Kreislová, M. Faller, D. de la Fuente, T. Yates, A. Verney-Carron, T. Grøntoft, A. Gordon and U. Hans, ICP materials trends in corrosion, soiling and air pollution (1987–2014), Materials, 10 (2017).
doi: 10.3390/ma10080969.
|
[36]
|
Transportation Research Board, Critical Issues in Transportation 2019, Technical report, The National Academies of Sciences, Engineering, Medicine, 2019.
|
[37]
|
TRB Executive Committee, Special Report 307: Policy Options for Reducing Energy and
Greenhouse Gas Emissions from U.S. Transportation, Technical Report, Transportation Research Board of the National Academies, 2011.
|
[38]
|
US Department of Transportation and Federal Highway Administration, Next generation simulation (NGSIM), http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
|
[39]
|
T. Wang, L. Xue, P. Brimblecombe, Y. F. Lam, L. Li and L. Zhang, Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575 (2017), 1582-1596.
doi: 10.1016/j.scitotenv.2016.10.081.
|
[40]
|
R. P. Wayne, Chemistry of Atmospheres, Clarendon Press, Oxford, 1991.
|
[41]
|
S. K. Zegeye, B. De Schutter, J. Hellendoorn, E. A. Breunesse and A. Hegyi, Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes, Transp. Res. Part C: Emerg. Technol., 31 (2013), 158-171.
doi: 10.1016/j.trc.2013.01.002.
|
[42]
|
H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. B, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3.
|
[43]
|
K. Zhang and S. Batterman, Air pollution and health risks due to vehicle traffic, Sci. Total Environ., 450-451 (2013), 307-316.
doi: 10.1016/j.scitotenv.2013.01.074.
|