-
Previous Article
Positive solutions of a diffusive two competitive species model with saturation
- DCDS-B Home
- This Issue
-
Next Article
Practical partial stability of time-varying systems
Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations
1. | College of Mathematical Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China |
2. | Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
In this paper we consider the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions for the general iterative functional differential equation $ \dot{x}(t) = f(t,x(t),x^{[2]}(t),...,x^{[n]}(t)). $ As $ n = 2 $, this equation can be regarded as a mixed-type functional differential equation with state-dependence $ \dot{x}(t) = f(t,x(t),x(T(t,x(t)))) $ of a special form but, being a nonlinear operator, $ n $-th order iteration makes more difficulties in estimation than usual state-dependence. Then we apply our results to the existence, uniqueness, boundedness, asymptotics and continuous dependence of solutions for the mixed-type functional differential equation. Finally, we present two concrete examples to show the boundedness and asymptotics of solutions to these two types of equations respectively.
References:
[1] |
P. Andrzej,
On some iterative-differential equations. I, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 12 (1968), 53-56.
|
[2] |
I. Balázs and T. Krisztin,
A differential equation with a state-dependent queueing delay, SIAM J. Math. Anal., 52 (2020), 3697-3737.
doi: 10.1137/19M1257585. |
[3] |
L. Boullu, L. Pujo-Menjouet and J. Wu,
A model for megakaryopoiesis with state-dependent delay, SIAM. J. Appl. Math., 79 (2019), 1218-1243.
doi: 10.1137/18M1201020. |
[4] |
G. Brauer,
Functional inequalities, Amer. Math. Month., 71 (1964), 1014-1017.
doi: 10.2307/2311919. |
[5] |
C. E. Carr and M. Konishi,
A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neurosci., 10 (1990), 3227-3246.
doi: 10.1523/JNEUROSCI.10-10-03227.1990. |
[6] |
S. Cheng, J. Si and X. Wang,
An existence theorem for iterative functional differential equations, Acta Math. Hungar., 94 (2002), 1-17.
doi: 10.1023/A:1015609518664. |
[7] |
K. L. Cooke,
Asymptotic theory for the delay-differential equation $u'(t) = -au(t-r(u(t)))$, J. Math. Anal. Appl., 19 (1967), 160-173.
doi: 10.1016/0022-247X(67)90029-7. |
[8] |
R. D. Driver,
A two-body problem of classical electrodynamics: The one-dimensional case, Ann. Phys., 21 (1963), 122-142.
doi: 10.1016/0003-4916(63)90227-6. |
[9] |
G. M. Dunkel,
On nested functional differential equations, SIAM J. Appl. Math., 18 (1970), 514-525.
doi: 10.1137/0118044. |
[10] |
E. Eder,
The functional differential equation $x'(t) = x(x(t))$, J. Diff. Eqns., 54 (1984), 390-400.
doi: 10.1016/0022-0396(84)90150-5. |
[11] |
M. Fečkan,
On a certain type of functional differential equations, Math. Slovaca, 43 (1993), 39-43.
|
[12] |
C. G. Gal,
Nonlinear abstract differential equations with deviated argument, J. Math. Anal. Appl., 333 (2007), 971-983.
doi: 10.1016/j.jmaa.2006.11.033. |
[13] |
P. Getto and M. Waurick,
A differential equation with state-dependent delay from cell population biology, J. Diff. Eqns., 260 (2016), 6176-6200.
doi: 10.1016/j.jde.2015.12.038. |
[14] |
L. J. Grimm,
Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc., 29 (1971), 467-473.
doi: 10.1090/S0002-9939-1971-0287117-1. |
[15] |
Z. Hao, J. Liang and T. Xiao,
Positive solutions of operator equations on half-line, J. Math. Anal. Appl., 314 (2006), 423-435.
doi: 10.1016/j.jmaa.2005.04.004. |
[16] |
F. Hartung, T. Krisztin, H.-O. Walther and J. Wu,
Functional differential equations with state-dependent delay: Theory and applications, Handbook of Differential Equations: Ordinary Differential Equations. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 435-545.
doi: 10.1016/S1874-5725(06)80009-X. |
[17] |
E. Hernandez, J. Wu and A. Chadha,
Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay, J. Diff. Eqns., 269 (2020), 8701-8735.
doi: 10.1016/j.jde.2020.06.030. |
[18] |
U. Horst and D. Kreher,
A weak law of large numbers for a limit order book model with fully state dependent order dynamics, SIAM J. Financ. Math., 8 (2017), 314-343.
doi: 10.1137/15M1024226. |
[19] |
Q. Hu,
A model of cold metal rolling processes with state-dependent delay, SIAM J. Appl. Math., 76 (2016), 1076-1100.
doi: 10.1137/141000257. |
[20] |
Q. Hu, W. Krawcewicz and J. Turi,
Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24.
doi: 10.1137/110823468. |
[21] |
B. Kennedy,
The Poincaré-Bendixson theorem for a class of delay equations with state-dependent delay and monotonic feedback, J. Diff. Eqns., 266 (2019), 1865-1898.
doi: 10.1016/j.jde.2018.08.012. |
[22] |
M. Kloosterman, S. A. Campbell and F. J. Poulin,
An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577.
doi: 10.1137/15M1021271. |
[23] |
M. A. Krasnoselskii, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty; Edited by Leo F. Boron P. Noordhoff Ltd. Groningen, 1964. |
[24] |
Y. Kuang, $3/2$ stability results for nonautonomous state-dependent delay differential equations, Differential Equations and Applications to Biology and to Industry (Claremont, CA, 1994), World Sci. Publ., River Edge, NJ, (1996), 261–269. |
[25] |
M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9781139086639.![]() ![]() ![]() |
[26] |
K. Lan and J. R. L. Webb,
Positive solutions of semilinear differential equations with singularities, J. Diff. Eqns., 148 (1998), 407-421.
doi: 10.1006/jdeq.1998.3475. |
[27] |
Y. Liu,
Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 144 (2003), 543-556.
doi: 10.1016/S0096-3003(02)00431-9. |
[28] |
J. Mallet-Paret and R. D. Nussbaum,
Stability of periodic solutions of state-dependent delay-differential equations, J. Diff. Eqns., 250 (2011), 4085-4103.
doi: 10.1016/j.jde.2010.10.023. |
[29] |
H. Müller-Krumbhaar and J. P. v. d. Eerden,
Some properties of simple recursive differential equations, Z. Phys. B: Condensed Matter, 67 (1987), 239-242.
doi: 10.1007/BF01303988. |
[30] |
R. Oberg,
On the local existence of solutions of certain functional-differential equations, Proc. Amer. Math. Soc., 20 (1969), 295-302.
doi: 10.1090/S0002-9939-1969-0234094-6. |
[31] |
J. Si and X. Wang,
Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients, J. Math. Anal. Appl., 226 (1998), 377-392.
doi: 10.1006/jmaa.1998.6086. |
[32] |
J. Si, X. Wang and S. Cheng,
Nondecreasing and convex $C^2$-solutions of an iterative functional-differential equation, Aequat. Math., 60 (2000), 38-56.
doi: 10.1007/s000100050134. |
[33] |
J. Si and W. Zhang,
Analytic solutions of a class of iterative functional differential equations, J. Comput. Appl. Math., 162 (2004), 467-481.
doi: 10.1016/j.cam.2003.08.049. |
[34] |
S. Staněk,
On global properties of solutions of functional-differential equation $x'(t)=x(x(t))+x(t)$, Dyn. Syst. Appl., 4 (1995), 263-277.
|
[35] |
E. Turdza,
On a functional inequality with $n$-th iterate of the unknown function, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 16 (1974), 189-194.
|
[36] |
E. Turdza,
The solutions of an inequality for the $n$-th iterate of a function, Amer. Math. Month., 86 (1979), 281-283.
doi: 10.1080/00029890.1979.11994789. |
[37] |
H.-O. Walther,
Merging homoclinic solutions due to state-dependent delay, J. Diff. Eqns., 259 (2015), 473-509.
doi: 10.1016/j.jde.2015.02.009. |
[38] |
K. Wang,
On the equation $x'(t)=f(x(x(t)))$, Funk. Ekv., 33 (1990), 405-425.
|
[39] |
B. Xu, W. Zhang and J. Si,
Analytic solutions of an iterative functional differential equation which may violate the Diophantine condition, J. Difference Equ. Appl., 10 (2004), 201-211.
doi: 10.1080/1023-6190310001596571. |
[40] |
D. Yang and W. Zhang,
Solutions of equivariance for iterative differential equations, Appl. Math. Lett., 17 (2004), 759-765.
doi: 10.1016/j.aml.2004.06.002. |
[41] |
Y. Zeng, P. Zhang, T.-T. Lu and W. Zhang,
Existence of solutions for a mixed type differential equation with state-dependence, J. Math. Anal. Appl., 453 (2017), 629-644.
doi: 10.1016/j.jmaa.2017.04.020. |
[42] |
M. Zima,
On positive solutions of boundary value problems on the half-Line, J. Math. Anal. Appl., 259 (2001), 127-136.
doi: 10.1006/jmaa.2000.7399. |
show all references
References:
[1] |
P. Andrzej,
On some iterative-differential equations. I, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 12 (1968), 53-56.
|
[2] |
I. Balázs and T. Krisztin,
A differential equation with a state-dependent queueing delay, SIAM J. Math. Anal., 52 (2020), 3697-3737.
doi: 10.1137/19M1257585. |
[3] |
L. Boullu, L. Pujo-Menjouet and J. Wu,
A model for megakaryopoiesis with state-dependent delay, SIAM. J. Appl. Math., 79 (2019), 1218-1243.
doi: 10.1137/18M1201020. |
[4] |
G. Brauer,
Functional inequalities, Amer. Math. Month., 71 (1964), 1014-1017.
doi: 10.2307/2311919. |
[5] |
C. E. Carr and M. Konishi,
A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neurosci., 10 (1990), 3227-3246.
doi: 10.1523/JNEUROSCI.10-10-03227.1990. |
[6] |
S. Cheng, J. Si and X. Wang,
An existence theorem for iterative functional differential equations, Acta Math. Hungar., 94 (2002), 1-17.
doi: 10.1023/A:1015609518664. |
[7] |
K. L. Cooke,
Asymptotic theory for the delay-differential equation $u'(t) = -au(t-r(u(t)))$, J. Math. Anal. Appl., 19 (1967), 160-173.
doi: 10.1016/0022-247X(67)90029-7. |
[8] |
R. D. Driver,
A two-body problem of classical electrodynamics: The one-dimensional case, Ann. Phys., 21 (1963), 122-142.
doi: 10.1016/0003-4916(63)90227-6. |
[9] |
G. M. Dunkel,
On nested functional differential equations, SIAM J. Appl. Math., 18 (1970), 514-525.
doi: 10.1137/0118044. |
[10] |
E. Eder,
The functional differential equation $x'(t) = x(x(t))$, J. Diff. Eqns., 54 (1984), 390-400.
doi: 10.1016/0022-0396(84)90150-5. |
[11] |
M. Fečkan,
On a certain type of functional differential equations, Math. Slovaca, 43 (1993), 39-43.
|
[12] |
C. G. Gal,
Nonlinear abstract differential equations with deviated argument, J. Math. Anal. Appl., 333 (2007), 971-983.
doi: 10.1016/j.jmaa.2006.11.033. |
[13] |
P. Getto and M. Waurick,
A differential equation with state-dependent delay from cell population biology, J. Diff. Eqns., 260 (2016), 6176-6200.
doi: 10.1016/j.jde.2015.12.038. |
[14] |
L. J. Grimm,
Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc., 29 (1971), 467-473.
doi: 10.1090/S0002-9939-1971-0287117-1. |
[15] |
Z. Hao, J. Liang and T. Xiao,
Positive solutions of operator equations on half-line, J. Math. Anal. Appl., 314 (2006), 423-435.
doi: 10.1016/j.jmaa.2005.04.004. |
[16] |
F. Hartung, T. Krisztin, H.-O. Walther and J. Wu,
Functional differential equations with state-dependent delay: Theory and applications, Handbook of Differential Equations: Ordinary Differential Equations. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 435-545.
doi: 10.1016/S1874-5725(06)80009-X. |
[17] |
E. Hernandez, J. Wu and A. Chadha,
Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay, J. Diff. Eqns., 269 (2020), 8701-8735.
doi: 10.1016/j.jde.2020.06.030. |
[18] |
U. Horst and D. Kreher,
A weak law of large numbers for a limit order book model with fully state dependent order dynamics, SIAM J. Financ. Math., 8 (2017), 314-343.
doi: 10.1137/15M1024226. |
[19] |
Q. Hu,
A model of cold metal rolling processes with state-dependent delay, SIAM J. Appl. Math., 76 (2016), 1076-1100.
doi: 10.1137/141000257. |
[20] |
Q. Hu, W. Krawcewicz and J. Turi,
Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24.
doi: 10.1137/110823468. |
[21] |
B. Kennedy,
The Poincaré-Bendixson theorem for a class of delay equations with state-dependent delay and monotonic feedback, J. Diff. Eqns., 266 (2019), 1865-1898.
doi: 10.1016/j.jde.2018.08.012. |
[22] |
M. Kloosterman, S. A. Campbell and F. J. Poulin,
An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577.
doi: 10.1137/15M1021271. |
[23] |
M. A. Krasnoselskii, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty; Edited by Leo F. Boron P. Noordhoff Ltd. Groningen, 1964. |
[24] |
Y. Kuang, $3/2$ stability results for nonautonomous state-dependent delay differential equations, Differential Equations and Applications to Biology and to Industry (Claremont, CA, 1994), World Sci. Publ., River Edge, NJ, (1996), 261–269. |
[25] |
M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9781139086639.![]() ![]() ![]() |
[26] |
K. Lan and J. R. L. Webb,
Positive solutions of semilinear differential equations with singularities, J. Diff. Eqns., 148 (1998), 407-421.
doi: 10.1006/jdeq.1998.3475. |
[27] |
Y. Liu,
Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 144 (2003), 543-556.
doi: 10.1016/S0096-3003(02)00431-9. |
[28] |
J. Mallet-Paret and R. D. Nussbaum,
Stability of periodic solutions of state-dependent delay-differential equations, J. Diff. Eqns., 250 (2011), 4085-4103.
doi: 10.1016/j.jde.2010.10.023. |
[29] |
H. Müller-Krumbhaar and J. P. v. d. Eerden,
Some properties of simple recursive differential equations, Z. Phys. B: Condensed Matter, 67 (1987), 239-242.
doi: 10.1007/BF01303988. |
[30] |
R. Oberg,
On the local existence of solutions of certain functional-differential equations, Proc. Amer. Math. Soc., 20 (1969), 295-302.
doi: 10.1090/S0002-9939-1969-0234094-6. |
[31] |
J. Si and X. Wang,
Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients, J. Math. Anal. Appl., 226 (1998), 377-392.
doi: 10.1006/jmaa.1998.6086. |
[32] |
J. Si, X. Wang and S. Cheng,
Nondecreasing and convex $C^2$-solutions of an iterative functional-differential equation, Aequat. Math., 60 (2000), 38-56.
doi: 10.1007/s000100050134. |
[33] |
J. Si and W. Zhang,
Analytic solutions of a class of iterative functional differential equations, J. Comput. Appl. Math., 162 (2004), 467-481.
doi: 10.1016/j.cam.2003.08.049. |
[34] |
S. Staněk,
On global properties of solutions of functional-differential equation $x'(t)=x(x(t))+x(t)$, Dyn. Syst. Appl., 4 (1995), 263-277.
|
[35] |
E. Turdza,
On a functional inequality with $n$-th iterate of the unknown function, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 16 (1974), 189-194.
|
[36] |
E. Turdza,
The solutions of an inequality for the $n$-th iterate of a function, Amer. Math. Month., 86 (1979), 281-283.
doi: 10.1080/00029890.1979.11994789. |
[37] |
H.-O. Walther,
Merging homoclinic solutions due to state-dependent delay, J. Diff. Eqns., 259 (2015), 473-509.
doi: 10.1016/j.jde.2015.02.009. |
[38] |
K. Wang,
On the equation $x'(t)=f(x(x(t)))$, Funk. Ekv., 33 (1990), 405-425.
|
[39] |
B. Xu, W. Zhang and J. Si,
Analytic solutions of an iterative functional differential equation which may violate the Diophantine condition, J. Difference Equ. Appl., 10 (2004), 201-211.
doi: 10.1080/1023-6190310001596571. |
[40] |
D. Yang and W. Zhang,
Solutions of equivariance for iterative differential equations, Appl. Math. Lett., 17 (2004), 759-765.
doi: 10.1016/j.aml.2004.06.002. |
[41] |
Y. Zeng, P. Zhang, T.-T. Lu and W. Zhang,
Existence of solutions for a mixed type differential equation with state-dependence, J. Math. Anal. Appl., 453 (2017), 629-644.
doi: 10.1016/j.jmaa.2017.04.020. |
[42] |
M. Zima,
On positive solutions of boundary value problems on the half-Line, J. Math. Anal. Appl., 259 (2001), 127-136.
doi: 10.1006/jmaa.2000.7399. |
[1] |
Huaiyu Zhou, Jingbo Dou. Classifications of positive solutions to an integral system involving the multilinear fractional integral inequality. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022070 |
[2] |
Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure and Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929 |
[3] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[4] |
Gennaro Infante. Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 691-699. doi: 10.3934/dcdsb.2019261 |
[5] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[6] |
Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167 |
[7] |
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 |
[8] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[9] |
Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial and Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621 |
[10] |
Fen-Fen Yang. Harnack inequality and gradient estimate for functional G-SDEs with degenerate noise. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022008 |
[11] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[12] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[13] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[14] |
Jitai Liang, Ben Niu, Junjie Wei. Linearized stability for abstract functional differential equations subject to state-dependent delays with applications. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6167-6188. doi: 10.3934/dcdsb.2019134 |
[15] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[16] |
Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155 |
[17] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[18] |
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016 |
[19] |
Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103 |
[20] |
Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]