doi: 10.3934/dcdsb.2021198
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations

1. 

College of Mathematical Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Jun Shen, junshen85@163.com

Received  April 2021 Revised  June 2021 Early access August 2021

Fund Project: This work was supported by NSFC #11701400, #11831012, #12090013 and #12071317, and Sichuan Science and Technology Program #2020YJ0328

In this paper we consider the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions for the general iterative functional differential equation $ \dot{x}(t) = f(t,x(t),x^{[2]}(t),...,x^{[n]}(t)). $ As $ n = 2 $, this equation can be regarded as a mixed-type functional differential equation with state-dependence $ \dot{x}(t) = f(t,x(t),x(T(t,x(t)))) $ of a special form but, being a nonlinear operator, $ n $-th order iteration makes more difficulties in estimation than usual state-dependence. Then we apply our results to the existence, uniqueness, boundedness, asymptotics and continuous dependence of solutions for the mixed-type functional differential equation. Finally, we present two concrete examples to show the boundedness and asymptotics of solutions to these two types of equations respectively.

Citation: Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021198
References:
[1]

P. Andrzej, On some iterative-differential equations. I, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 12 (1968), 53-56.   Google Scholar

[2]

I. Balázs and T. Krisztin, A differential equation with a state-dependent queueing delay, SIAM J. Math. Anal., 52 (2020), 3697-3737.  doi: 10.1137/19M1257585.  Google Scholar

[3]

L. BoulluL. Pujo-Menjouet and J. Wu, A model for megakaryopoiesis with state-dependent delay, SIAM. J. Appl. Math., 79 (2019), 1218-1243.  doi: 10.1137/18M1201020.  Google Scholar

[4]

G. Brauer, Functional inequalities, Amer. Math. Month., 71 (1964), 1014-1017.  doi: 10.2307/2311919.  Google Scholar

[5]

C. E. Carr and M. Konishi, A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neurosci., 10 (1990), 3227-3246.  doi: 10.1523/JNEUROSCI.10-10-03227.1990.  Google Scholar

[6]

S. ChengJ. Si and X. Wang, An existence theorem for iterative functional differential equations, Acta Math. Hungar., 94 (2002), 1-17.  doi: 10.1023/A:1015609518664.  Google Scholar

[7]

K. L. Cooke, Asymptotic theory for the delay-differential equation $u'(t) = -au(t-r(u(t)))$, J. Math. Anal. Appl., 19 (1967), 160-173.  doi: 10.1016/0022-247X(67)90029-7.  Google Scholar

[8]

R. D. Driver, A two-body problem of classical electrodynamics: The one-dimensional case, Ann. Phys., 21 (1963), 122-142.  doi: 10.1016/0003-4916(63)90227-6.  Google Scholar

[9]

G. M. Dunkel, On nested functional differential equations, SIAM J. Appl. Math., 18 (1970), 514-525.  doi: 10.1137/0118044.  Google Scholar

[10]

E. Eder, The functional differential equation $x'(t) = x(x(t))$, J. Diff. Eqns., 54 (1984), 390-400.  doi: 10.1016/0022-0396(84)90150-5.  Google Scholar

[11]

M. Fečkan, On a certain type of functional differential equations, Math. Slovaca, 43 (1993), 39-43.   Google Scholar

[12]

C. G. Gal, Nonlinear abstract differential equations with deviated argument, J. Math. Anal. Appl., 333 (2007), 971-983.  doi: 10.1016/j.jmaa.2006.11.033.  Google Scholar

[13]

P. Getto and M. Waurick, A differential equation with state-dependent delay from cell population biology, J. Diff. Eqns., 260 (2016), 6176-6200.  doi: 10.1016/j.jde.2015.12.038.  Google Scholar

[14]

L. J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc., 29 (1971), 467-473.  doi: 10.1090/S0002-9939-1971-0287117-1.  Google Scholar

[15]

Z. HaoJ. Liang and T. Xiao, Positive solutions of operator equations on half-line, J. Math. Anal. Appl., 314 (2006), 423-435.  doi: 10.1016/j.jmaa.2005.04.004.  Google Scholar

[16]

F. HartungT. KrisztinH.-O. Walther and J. Wu, Functional differential equations with state-dependent delay: Theory and applications, Handbook of Differential Equations: Ordinary Differential Equations. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 435-545.  doi: 10.1016/S1874-5725(06)80009-X.  Google Scholar

[17]

E. HernandezJ. Wu and A. Chadha, Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay, J. Diff. Eqns., 269 (2020), 8701-8735.  doi: 10.1016/j.jde.2020.06.030.  Google Scholar

[18]

U. Horst and D. Kreher, A weak law of large numbers for a limit order book model with fully state dependent order dynamics, SIAM J. Financ. Math., 8 (2017), 314-343.  doi: 10.1137/15M1024226.  Google Scholar

[19]

Q. Hu, A model of cold metal rolling processes with state-dependent delay, SIAM J. Appl. Math., 76 (2016), 1076-1100.  doi: 10.1137/141000257.  Google Scholar

[20]

Q. HuW. Krawcewicz and J. Turi, Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24.  doi: 10.1137/110823468.  Google Scholar

[21]

B. Kennedy, The Poincaré-Bendixson theorem for a class of delay equations with state-dependent delay and monotonic feedback, J. Diff. Eqns., 266 (2019), 1865-1898.  doi: 10.1016/j.jde.2018.08.012.  Google Scholar

[22]

M. KloostermanS. A. Campbell and F. J. Poulin, An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577.  doi: 10.1137/15M1021271.  Google Scholar

[23]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty; Edited by Leo F. Boron P. Noordhoff Ltd. Groningen, 1964.  Google Scholar

[24]

Y. Kuang, $3/2$ stability results for nonautonomous state-dependent delay differential equations, Differential Equations and Applications to Biology and to Industry (Claremont, CA, 1994), World Sci. Publ., River Edge, NJ, (1996), 261–269.  Google Scholar

[25] M. KuczmaB. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139086639.  Google Scholar
[26]

K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Diff. Eqns., 148 (1998), 407-421.  doi: 10.1006/jdeq.1998.3475.  Google Scholar

[27]

Y. Liu, Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 144 (2003), 543-556.  doi: 10.1016/S0096-3003(02)00431-9.  Google Scholar

[28]

J. Mallet-Paret and R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, J. Diff. Eqns., 250 (2011), 4085-4103.  doi: 10.1016/j.jde.2010.10.023.  Google Scholar

[29]

H. Müller-Krumbhaar and J. P. v. d. Eerden, Some properties of simple recursive differential equations, Z. Phys. B: Condensed Matter, 67 (1987), 239-242.  doi: 10.1007/BF01303988.  Google Scholar

[30]

R. Oberg, On the local existence of solutions of certain functional-differential equations, Proc. Amer. Math. Soc., 20 (1969), 295-302.  doi: 10.1090/S0002-9939-1969-0234094-6.  Google Scholar

[31]

J. Si and X. Wang, Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients, J. Math. Anal. Appl., 226 (1998), 377-392.  doi: 10.1006/jmaa.1998.6086.  Google Scholar

[32]

J. SiX. Wang and S. Cheng, Nondecreasing and convex $C^2$-solutions of an iterative functional-differential equation, Aequat. Math., 60 (2000), 38-56.  doi: 10.1007/s000100050134.  Google Scholar

[33]

J. Si and W. Zhang, Analytic solutions of a class of iterative functional differential equations, J. Comput. Appl. Math., 162 (2004), 467-481.  doi: 10.1016/j.cam.2003.08.049.  Google Scholar

[34]

S. Staněk, On global properties of solutions of functional-differential equation $x'(t)=x(x(t))+x(t)$, Dyn. Syst. Appl., 4 (1995), 263-277.   Google Scholar

[35]

E. Turdza, On a functional inequality with $n$-th iterate of the unknown function, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 16 (1974), 189-194.   Google Scholar

[36]

E. Turdza, The solutions of an inequality for the $n$-th iterate of a function, Amer. Math. Month., 86 (1979), 281-283.  doi: 10.1080/00029890.1979.11994789.  Google Scholar

[37]

H.-O. Walther, Merging homoclinic solutions due to state-dependent delay, J. Diff. Eqns., 259 (2015), 473-509.  doi: 10.1016/j.jde.2015.02.009.  Google Scholar

[38]

K. Wang, On the equation $x'(t)=f(x(x(t)))$, Funk. Ekv., 33 (1990), 405-425.   Google Scholar

[39]

B. XuW. Zhang and J. Si, Analytic solutions of an iterative functional differential equation which may violate the Diophantine condition, J. Difference Equ. Appl., 10 (2004), 201-211.  doi: 10.1080/1023-6190310001596571.  Google Scholar

[40]

D. Yang and W. Zhang, Solutions of equivariance for iterative differential equations, Appl. Math. Lett., 17 (2004), 759-765.  doi: 10.1016/j.aml.2004.06.002.  Google Scholar

[41]

Y. ZengP. ZhangT.-T. Lu and W. Zhang, Existence of solutions for a mixed type differential equation with state-dependence, J. Math. Anal. Appl., 453 (2017), 629-644.  doi: 10.1016/j.jmaa.2017.04.020.  Google Scholar

[42]

M. Zima, On positive solutions of boundary value problems on the half-Line, J. Math. Anal. Appl., 259 (2001), 127-136.  doi: 10.1006/jmaa.2000.7399.  Google Scholar

show all references

References:
[1]

P. Andrzej, On some iterative-differential equations. I, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 12 (1968), 53-56.   Google Scholar

[2]

I. Balázs and T. Krisztin, A differential equation with a state-dependent queueing delay, SIAM J. Math. Anal., 52 (2020), 3697-3737.  doi: 10.1137/19M1257585.  Google Scholar

[3]

L. BoulluL. Pujo-Menjouet and J. Wu, A model for megakaryopoiesis with state-dependent delay, SIAM. J. Appl. Math., 79 (2019), 1218-1243.  doi: 10.1137/18M1201020.  Google Scholar

[4]

G. Brauer, Functional inequalities, Amer. Math. Month., 71 (1964), 1014-1017.  doi: 10.2307/2311919.  Google Scholar

[5]

C. E. Carr and M. Konishi, A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neurosci., 10 (1990), 3227-3246.  doi: 10.1523/JNEUROSCI.10-10-03227.1990.  Google Scholar

[6]

S. ChengJ. Si and X. Wang, An existence theorem for iterative functional differential equations, Acta Math. Hungar., 94 (2002), 1-17.  doi: 10.1023/A:1015609518664.  Google Scholar

[7]

K. L. Cooke, Asymptotic theory for the delay-differential equation $u'(t) = -au(t-r(u(t)))$, J. Math. Anal. Appl., 19 (1967), 160-173.  doi: 10.1016/0022-247X(67)90029-7.  Google Scholar

[8]

R. D. Driver, A two-body problem of classical electrodynamics: The one-dimensional case, Ann. Phys., 21 (1963), 122-142.  doi: 10.1016/0003-4916(63)90227-6.  Google Scholar

[9]

G. M. Dunkel, On nested functional differential equations, SIAM J. Appl. Math., 18 (1970), 514-525.  doi: 10.1137/0118044.  Google Scholar

[10]

E. Eder, The functional differential equation $x'(t) = x(x(t))$, J. Diff. Eqns., 54 (1984), 390-400.  doi: 10.1016/0022-0396(84)90150-5.  Google Scholar

[11]

M. Fečkan, On a certain type of functional differential equations, Math. Slovaca, 43 (1993), 39-43.   Google Scholar

[12]

C. G. Gal, Nonlinear abstract differential equations with deviated argument, J. Math. Anal. Appl., 333 (2007), 971-983.  doi: 10.1016/j.jmaa.2006.11.033.  Google Scholar

[13]

P. Getto and M. Waurick, A differential equation with state-dependent delay from cell population biology, J. Diff. Eqns., 260 (2016), 6176-6200.  doi: 10.1016/j.jde.2015.12.038.  Google Scholar

[14]

L. J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc., 29 (1971), 467-473.  doi: 10.1090/S0002-9939-1971-0287117-1.  Google Scholar

[15]

Z. HaoJ. Liang and T. Xiao, Positive solutions of operator equations on half-line, J. Math. Anal. Appl., 314 (2006), 423-435.  doi: 10.1016/j.jmaa.2005.04.004.  Google Scholar

[16]

F. HartungT. KrisztinH.-O. Walther and J. Wu, Functional differential equations with state-dependent delay: Theory and applications, Handbook of Differential Equations: Ordinary Differential Equations. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 435-545.  doi: 10.1016/S1874-5725(06)80009-X.  Google Scholar

[17]

E. HernandezJ. Wu and A. Chadha, Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay, J. Diff. Eqns., 269 (2020), 8701-8735.  doi: 10.1016/j.jde.2020.06.030.  Google Scholar

[18]

U. Horst and D. Kreher, A weak law of large numbers for a limit order book model with fully state dependent order dynamics, SIAM J. Financ. Math., 8 (2017), 314-343.  doi: 10.1137/15M1024226.  Google Scholar

[19]

Q. Hu, A model of cold metal rolling processes with state-dependent delay, SIAM J. Appl. Math., 76 (2016), 1076-1100.  doi: 10.1137/141000257.  Google Scholar

[20]

Q. HuW. Krawcewicz and J. Turi, Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24.  doi: 10.1137/110823468.  Google Scholar

[21]

B. Kennedy, The Poincaré-Bendixson theorem for a class of delay equations with state-dependent delay and monotonic feedback, J. Diff. Eqns., 266 (2019), 1865-1898.  doi: 10.1016/j.jde.2018.08.012.  Google Scholar

[22]

M. KloostermanS. A. Campbell and F. J. Poulin, An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577.  doi: 10.1137/15M1021271.  Google Scholar

[23]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty; Edited by Leo F. Boron P. Noordhoff Ltd. Groningen, 1964.  Google Scholar

[24]

Y. Kuang, $3/2$ stability results for nonautonomous state-dependent delay differential equations, Differential Equations and Applications to Biology and to Industry (Claremont, CA, 1994), World Sci. Publ., River Edge, NJ, (1996), 261–269.  Google Scholar

[25] M. KuczmaB. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139086639.  Google Scholar
[26]

K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Diff. Eqns., 148 (1998), 407-421.  doi: 10.1006/jdeq.1998.3475.  Google Scholar

[27]

Y. Liu, Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 144 (2003), 543-556.  doi: 10.1016/S0096-3003(02)00431-9.  Google Scholar

[28]

J. Mallet-Paret and R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, J. Diff. Eqns., 250 (2011), 4085-4103.  doi: 10.1016/j.jde.2010.10.023.  Google Scholar

[29]

H. Müller-Krumbhaar and J. P. v. d. Eerden, Some properties of simple recursive differential equations, Z. Phys. B: Condensed Matter, 67 (1987), 239-242.  doi: 10.1007/BF01303988.  Google Scholar

[30]

R. Oberg, On the local existence of solutions of certain functional-differential equations, Proc. Amer. Math. Soc., 20 (1969), 295-302.  doi: 10.1090/S0002-9939-1969-0234094-6.  Google Scholar

[31]

J. Si and X. Wang, Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients, J. Math. Anal. Appl., 226 (1998), 377-392.  doi: 10.1006/jmaa.1998.6086.  Google Scholar

[32]

J. SiX. Wang and S. Cheng, Nondecreasing and convex $C^2$-solutions of an iterative functional-differential equation, Aequat. Math., 60 (2000), 38-56.  doi: 10.1007/s000100050134.  Google Scholar

[33]

J. Si and W. Zhang, Analytic solutions of a class of iterative functional differential equations, J. Comput. Appl. Math., 162 (2004), 467-481.  doi: 10.1016/j.cam.2003.08.049.  Google Scholar

[34]

S. Staněk, On global properties of solutions of functional-differential equation $x'(t)=x(x(t))+x(t)$, Dyn. Syst. Appl., 4 (1995), 263-277.   Google Scholar

[35]

E. Turdza, On a functional inequality with $n$-th iterate of the unknown function, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 16 (1974), 189-194.   Google Scholar

[36]

E. Turdza, The solutions of an inequality for the $n$-th iterate of a function, Amer. Math. Month., 86 (1979), 281-283.  doi: 10.1080/00029890.1979.11994789.  Google Scholar

[37]

H.-O. Walther, Merging homoclinic solutions due to state-dependent delay, J. Diff. Eqns., 259 (2015), 473-509.  doi: 10.1016/j.jde.2015.02.009.  Google Scholar

[38]

K. Wang, On the equation $x'(t)=f(x(x(t)))$, Funk. Ekv., 33 (1990), 405-425.   Google Scholar

[39]

B. XuW. Zhang and J. Si, Analytic solutions of an iterative functional differential equation which may violate the Diophantine condition, J. Difference Equ. Appl., 10 (2004), 201-211.  doi: 10.1080/1023-6190310001596571.  Google Scholar

[40]

D. Yang and W. Zhang, Solutions of equivariance for iterative differential equations, Appl. Math. Lett., 17 (2004), 759-765.  doi: 10.1016/j.aml.2004.06.002.  Google Scholar

[41]

Y. ZengP. ZhangT.-T. Lu and W. Zhang, Existence of solutions for a mixed type differential equation with state-dependence, J. Math. Anal. Appl., 453 (2017), 629-644.  doi: 10.1016/j.jmaa.2017.04.020.  Google Scholar

[42]

M. Zima, On positive solutions of boundary value problems on the half-Line, J. Math. Anal. Appl., 259 (2001), 127-136.  doi: 10.1006/jmaa.2000.7399.  Google Scholar

[1]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure & Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[2]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[3]

Gennaro Infante. Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 691-699. doi: 10.3934/dcdsb.2019261

[4]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[5]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[6]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[7]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[8]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[9]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[10]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[11]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[12]

Jitai Liang, Ben Niu, Junjie Wei. Linearized stability for abstract functional differential equations subject to state-dependent delays with applications. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6167-6188. doi: 10.3934/dcdsb.2019134

[13]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[14]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[15]

X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671

[16]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[17]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[18]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[19]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[20]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

2020 Impact Factor: 1.327

Article outline

[Back to Top]