doi: 10.3934/dcdsb.2021200
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Effects of fear and anti-predator response in a discrete system with delay

1. 

Indian Institute of Engineering Science and Technology, Shibpur, Howrah -711103, India

2. 

Vivekananda College, Thakurpukur, Kolkata - 700063, India

* Corresponding author

Received  April 2021 Revised  May 2021 Early access August 2021

In this paper a discrete-time two prey one predator model is considered with delay and Holling Type-Ⅲ functional response. The cost of fear of predation and the effect of anti-predator behavior of the prey is incorporated in the model, coupled with inter-specific competition among the prey species and intra-specific competition within the predator. The conditions for existence of the equilibrium points are obtained. We further derive the sufficient conditions for permanence and global stability of the co-existence equilibrium point. It is observed that the effect of fear induces stability in the system by eliminating the periodic solutions. On the other hand the effect of anti-predator behavior plays a major role in de-stabilizing the system by giving rise to predator-prey oscillations. Finally, several numerical simulations are performed which support our analytical findings.

Citation: Ritwick Banerjee, Pritha Das, Debasis Mukherjee. Effects of fear and anti-predator response in a discrete system with delay. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021200
References:
[1]

S. AokiU. Kurosu and S. Usuba, First instar larvae of the sugar-cane wooly aphid, ceratovacuna lanigera (homotera, pemphigidae), attack its predators, Kontyu, 52 (1984), 458-460.   Google Scholar

[2]

R. BanerjeeP. Das and D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos, Solitons & Fractals, 117 (2018), 240-248.  doi: 10.1016/j.chaos.2018.10.032.  Google Scholar

[3]

R. BanerjeeP. Das and D. Mukherjee, Global dynamics of a Holling Type-Ⅲ two prey–one predator discrete model with optimal harvest strategy, Nonlinear Dynamics, 99 (2020), 3285-3300.  doi: 10.1007/s11071-020-05490-0.  Google Scholar

[4]

M. C. and A. Barkai, Predator-prey role reversal in a marine benthic ecosystem, Science, (1988), 62–64. Google Scholar

[5]

M. ClinchyM. J. Sheriff and L. Y. Zanette, Predator-induced stress and the ecology of fear, Functional Ecology, 27 (2013), 56-65.  doi: 10.1111/1365-2435.12007.  Google Scholar

[6]

R. Kaushik and S. Banerjee, Predator-prey system: Prey's counter-attack on juvenile predators shows opposite side of the same ecological coin, Applied Mathematics and Computation, 388 (2021), 125530. doi: 10.1016/j.amc.2020.125530.  Google Scholar

[7]

R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment, The American Naturalist, 100 (1966), 603-609.  doi: 10.1086/282454.  Google Scholar

[8]

R. J. Mrowicki and N. E. O'Connor, Wave action modifies the effects of consumer diversity and warming on algal assemblages, Ecology, 96 (2015), 1020-1029.  doi: 10.1890/14-0577.1.  Google Scholar

[9]

P. Panday, N. Pal, S. Samanta and J. Chattopadhyay, A three species food chain model with fear induced trophic cascade, Int. J. Appl. Comput. Math., 5 (2019), 26 pp. doi: 10.1007/s40819-019-0688-x.  Google Scholar

[10]

P. PanjaS. Jana and S. k. Mondal, Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey, Numerical Algebra, Control & Optimization, 11 (2021), 391-405.  doi: 10.3934/naco.2020033.  Google Scholar

[11]

W. Ripple, L. Painter, R. Beschta and C. Gates, Wolves, elk, bison, and secondary trophic cascades in Yellowstone National Park, The Open Ecology Journal, 3 (2010). Google Scholar

[12]

W. J. Ripple and R. L. Beschta, Wolves and the ecology of fear: Can predation risk structure ecosystems?, BioScience, 54 (2004), 755-766.   Google Scholar

[13]

W. J. Ripple and R. L. Beschta, Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction, Biological Conservation, 145 (2012), 205-213.   Google Scholar

[14]

Y. Saito, Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator, Experimental & Applied Acarology, 2 (1986), 47-62.  doi: 10.1007/BF01193354.  Google Scholar

[15]

O. J. SchmitzA. P. Beckerman and K. M. O'Brien, Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions, Ecology, 78 (1997), 1388-1399.   Google Scholar

[16]

Y. N. P. Service, \em 2019 Late Winter Survey of Northern Yellowstone Elk, 2019. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm. Google Scholar

[17]

Y. N. P. Service, \em Questions & Answers About Bison Management, 2021. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm. Google Scholar

[18]

D. W. SmithL. D. MechM. MeagherW. E. ClarkR. JaffeM. K. Phillips and J. A. Mack, Wolf–bison interactions in Yellowstone National Park, Journal of Mammalogy, 81 (2000), 1128-1135.   Google Scholar

[19]

J. P. Suraci, M. Clinchy, L. M. Dill, D. Roberts and L. Y. Zanette, Fear of large carnivores causes a trophic cascade, Nat Commun., 7 (2016), 10698. Google Scholar

[20]

V. Tiwari, J. P. Tripathi, S. Mishra and R. K. Upadhyay, Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems, Applied Mathematics and Computation, 371 (2020), 124948. doi: 10.1016/j.amc.2019.124948.  Google Scholar

[21]

H. ZhangY. CaiS. Fu and W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Applied Mathematics and Computation, 356 (2019), 328-337.  doi: 10.1016/j.amc.2019.03.034.  Google Scholar

show all references

References:
[1]

S. AokiU. Kurosu and S. Usuba, First instar larvae of the sugar-cane wooly aphid, ceratovacuna lanigera (homotera, pemphigidae), attack its predators, Kontyu, 52 (1984), 458-460.   Google Scholar

[2]

R. BanerjeeP. Das and D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos, Solitons & Fractals, 117 (2018), 240-248.  doi: 10.1016/j.chaos.2018.10.032.  Google Scholar

[3]

R. BanerjeeP. Das and D. Mukherjee, Global dynamics of a Holling Type-Ⅲ two prey–one predator discrete model with optimal harvest strategy, Nonlinear Dynamics, 99 (2020), 3285-3300.  doi: 10.1007/s11071-020-05490-0.  Google Scholar

[4]

M. C. and A. Barkai, Predator-prey role reversal in a marine benthic ecosystem, Science, (1988), 62–64. Google Scholar

[5]

M. ClinchyM. J. Sheriff and L. Y. Zanette, Predator-induced stress and the ecology of fear, Functional Ecology, 27 (2013), 56-65.  doi: 10.1111/1365-2435.12007.  Google Scholar

[6]

R. Kaushik and S. Banerjee, Predator-prey system: Prey's counter-attack on juvenile predators shows opposite side of the same ecological coin, Applied Mathematics and Computation, 388 (2021), 125530. doi: 10.1016/j.amc.2020.125530.  Google Scholar

[7]

R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment, The American Naturalist, 100 (1966), 603-609.  doi: 10.1086/282454.  Google Scholar

[8]

R. J. Mrowicki and N. E. O'Connor, Wave action modifies the effects of consumer diversity and warming on algal assemblages, Ecology, 96 (2015), 1020-1029.  doi: 10.1890/14-0577.1.  Google Scholar

[9]

P. Panday, N. Pal, S. Samanta and J. Chattopadhyay, A three species food chain model with fear induced trophic cascade, Int. J. Appl. Comput. Math., 5 (2019), 26 pp. doi: 10.1007/s40819-019-0688-x.  Google Scholar

[10]

P. PanjaS. Jana and S. k. Mondal, Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey, Numerical Algebra, Control & Optimization, 11 (2021), 391-405.  doi: 10.3934/naco.2020033.  Google Scholar

[11]

W. Ripple, L. Painter, R. Beschta and C. Gates, Wolves, elk, bison, and secondary trophic cascades in Yellowstone National Park, The Open Ecology Journal, 3 (2010). Google Scholar

[12]

W. J. Ripple and R. L. Beschta, Wolves and the ecology of fear: Can predation risk structure ecosystems?, BioScience, 54 (2004), 755-766.   Google Scholar

[13]

W. J. Ripple and R. L. Beschta, Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction, Biological Conservation, 145 (2012), 205-213.   Google Scholar

[14]

Y. Saito, Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator, Experimental & Applied Acarology, 2 (1986), 47-62.  doi: 10.1007/BF01193354.  Google Scholar

[15]

O. J. SchmitzA. P. Beckerman and K. M. O'Brien, Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions, Ecology, 78 (1997), 1388-1399.   Google Scholar

[16]

Y. N. P. Service, \em 2019 Late Winter Survey of Northern Yellowstone Elk, 2019. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm. Google Scholar

[17]

Y. N. P. Service, \em Questions & Answers About Bison Management, 2021. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm. Google Scholar

[18]

D. W. SmithL. D. MechM. MeagherW. E. ClarkR. JaffeM. K. Phillips and J. A. Mack, Wolf–bison interactions in Yellowstone National Park, Journal of Mammalogy, 81 (2000), 1128-1135.   Google Scholar

[19]

J. P. Suraci, M. Clinchy, L. M. Dill, D. Roberts and L. Y. Zanette, Fear of large carnivores causes a trophic cascade, Nat Commun., 7 (2016), 10698. Google Scholar

[20]

V. Tiwari, J. P. Tripathi, S. Mishra and R. K. Upadhyay, Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems, Applied Mathematics and Computation, 371 (2020), 124948. doi: 10.1016/j.amc.2019.124948.  Google Scholar

[21]

H. ZhangY. CaiS. Fu and W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Applied Mathematics and Computation, 356 (2019), 328-337.  doi: 10.1016/j.amc.2019.03.034.  Google Scholar

Figure 1.  Existence of the equilibrium point $ E_5(0, x_2', z') $ of system (2) with the parameter values $ r_2 = 2, b_2 = 1 , \beta = 1.5, g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, m = 0.025, c_2 = 1 $. For the chosen parameters the conditions of Theorem 1 are verified with $ Q = 8.73724>0 $, $ S = -2.89871<0 $
Figure 2.  Time series of (2) with the parameter values $ r_1 = 1, h = 1, p = 1, q = 0.01, b_1 = 0.6, b_2 = 0.6, g_1 = 0.02, g_2 = 0.03, d = 1, d_1 = 0.02, \alpha = 5, \beta = 1.5, m = 0.01, c_1 = 0.3, c_2 = 0.3, \tau_1 = 2, \tau_2 = 2 $
Figure 3.  Phase portraits and time series of (2) with the parameter values $ r_1 = 2 , h = 3.8, p = 0.3 , q = 0.6, , b_1 = 1.5, b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, m = 0.025, c_2 = 1, c_1 = 1.4, \tau_1 = 2, \tau_2 = 2 $
Figure 4.  Bifurcation diagram and chaos 0-1 test of system (2) with the parameter values $ r_1 = 2 , h = 3.8, p = 0.3 , q = 0.6, , b_1 = 1.5, b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, m = 0.025, c_2 = 1, c_1 = 1.4, \tau_1 = 2, \tau_2 = 2 $, showing the existence of chaos with increase in $ r_2 $
Figure 5.  Stability region of system (2) for the varying parameters $ r_2 $ and $ m $. The system shows stable dynamics in region A, period-2 oscillations in region B, period-4 oscillations in region C, period-3 oscillations in region D and chaotic dynamics in region E
Figure 6.  Bifurcation diagram and chaos 0-1 test of system (2) with the parameter values $ r_1 = 2 , p = 0.3 , q = 0.6, b_1 = 1.5, b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, c_2 = 1, c_1 = 1.4, \tau_1 = 2, \tau_2 = 2 $
Figure 7.  $ (p, q) $ plots for varying values of $ \tau_{1, 2} $ with the parameter values $ r_1 = 2, r_2 = 3.7, p = 0.3 , q = 0.6 , b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 1, c_2 = 1, c_1 = 1.4, b_1 = 1.5, h = 0.5, m = 3.265 $
Figure 8.  $ (p, q) $ plots for varying values of $ r_2 $ with the parameter values $ r_1 = 2, p = 0.3 , q = 0.6 , b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 1, c_2 = 1, c_1 = 1.4, b_1 = 1.5, h = 1, m = 2, \tau_{1} = 2, \tau_2 = 2 $
[1]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[2]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure &amp; Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[3]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[4]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[5]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[6]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[7]

Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure &amp; Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032

[8]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[9]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[10]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[11]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[12]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[13]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[14]

Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221

[15]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

[16]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047

[17]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[18]

Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021211

[19]

Susmita Halder, Joydeb Bhattacharyya, Samares Pal. Predator-prey interactions under fear effect and multiple foraging strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021206

[20]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (229)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]