July  2022, 27(7): 3643-3661. doi: 10.3934/dcdsb.2021200

Effects of fear and anti-predator response in a discrete system with delay

1. 

Indian Institute of Engineering Science and Technology, Shibpur, Howrah -711103, India

2. 

Vivekananda College, Thakurpukur, Kolkata - 700063, India

* Corresponding author

Received  April 2021 Revised  May 2021 Published  July 2022 Early access  August 2021

In this paper a discrete-time two prey one predator model is considered with delay and Holling Type-Ⅲ functional response. The cost of fear of predation and the effect of anti-predator behavior of the prey is incorporated in the model, coupled with inter-specific competition among the prey species and intra-specific competition within the predator. The conditions for existence of the equilibrium points are obtained. We further derive the sufficient conditions for permanence and global stability of the co-existence equilibrium point. It is observed that the effect of fear induces stability in the system by eliminating the periodic solutions. On the other hand the effect of anti-predator behavior plays a major role in de-stabilizing the system by giving rise to predator-prey oscillations. Finally, several numerical simulations are performed which support our analytical findings.

Citation: Ritwick Banerjee, Pritha Das, Debasis Mukherjee. Effects of fear and anti-predator response in a discrete system with delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3643-3661. doi: 10.3934/dcdsb.2021200
References:
[1]

S. AokiU. Kurosu and S. Usuba, First instar larvae of the sugar-cane wooly aphid, ceratovacuna lanigera (homotera, pemphigidae), attack its predators, Kontyu, 52 (1984), 458-460. 

[2]

R. BanerjeeP. Das and D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos, Solitons & Fractals, 117 (2018), 240-248.  doi: 10.1016/j.chaos.2018.10.032.

[3]

R. BanerjeeP. Das and D. Mukherjee, Global dynamics of a Holling Type-Ⅲ two prey–one predator discrete model with optimal harvest strategy, Nonlinear Dynamics, 99 (2020), 3285-3300.  doi: 10.1007/s11071-020-05490-0.

[4]

M. C. and A. Barkai, Predator-prey role reversal in a marine benthic ecosystem, Science, (1988), 62–64.

[5]

M. ClinchyM. J. Sheriff and L. Y. Zanette, Predator-induced stress and the ecology of fear, Functional Ecology, 27 (2013), 56-65.  doi: 10.1111/1365-2435.12007.

[6]

R. Kaushik and S. Banerjee, Predator-prey system: Prey's counter-attack on juvenile predators shows opposite side of the same ecological coin, Applied Mathematics and Computation, 388 (2021), 125530. doi: 10.1016/j.amc.2020.125530.

[7]

R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment, The American Naturalist, 100 (1966), 603-609.  doi: 10.1086/282454.

[8]

R. J. Mrowicki and N. E. O'Connor, Wave action modifies the effects of consumer diversity and warming on algal assemblages, Ecology, 96 (2015), 1020-1029.  doi: 10.1890/14-0577.1.

[9]

P. Panday, N. Pal, S. Samanta and J. Chattopadhyay, A three species food chain model with fear induced trophic cascade, Int. J. Appl. Comput. Math., 5 (2019), 26 pp. doi: 10.1007/s40819-019-0688-x.

[10]

P. PanjaS. Jana and S. k. Mondal, Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey, Numerical Algebra, Control & Optimization, 11 (2021), 391-405.  doi: 10.3934/naco.2020033.

[11]

W. Ripple, L. Painter, R. Beschta and C. Gates, Wolves, elk, bison, and secondary trophic cascades in Yellowstone National Park, The Open Ecology Journal, 3 (2010).

[12]

W. J. Ripple and R. L. Beschta, Wolves and the ecology of fear: Can predation risk structure ecosystems?, BioScience, 54 (2004), 755-766. 

[13]

W. J. Ripple and R. L. Beschta, Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction, Biological Conservation, 145 (2012), 205-213. 

[14]

Y. Saito, Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator, Experimental & Applied Acarology, 2 (1986), 47-62.  doi: 10.1007/BF01193354.

[15]

O. J. SchmitzA. P. Beckerman and K. M. O'Brien, Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions, Ecology, 78 (1997), 1388-1399. 

[16]

Y. N. P. Service, \em 2019 Late Winter Survey of Northern Yellowstone Elk, 2019. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm.

[17]

Y. N. P. Service, \em Questions & Answers About Bison Management, 2021. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm.

[18]

D. W. SmithL. D. MechM. MeagherW. E. ClarkR. JaffeM. K. Phillips and J. A. Mack, Wolf–bison interactions in Yellowstone National Park, Journal of Mammalogy, 81 (2000), 1128-1135. 

[19]

J. P. Suraci, M. Clinchy, L. M. Dill, D. Roberts and L. Y. Zanette, Fear of large carnivores causes a trophic cascade, Nat Commun., 7 (2016), 10698.

[20]

V. Tiwari, J. P. Tripathi, S. Mishra and R. K. Upadhyay, Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems, Applied Mathematics and Computation, 371 (2020), 124948. doi: 10.1016/j.amc.2019.124948.

[21]

H. ZhangY. CaiS. Fu and W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Applied Mathematics and Computation, 356 (2019), 328-337.  doi: 10.1016/j.amc.2019.03.034.

show all references

References:
[1]

S. AokiU. Kurosu and S. Usuba, First instar larvae of the sugar-cane wooly aphid, ceratovacuna lanigera (homotera, pemphigidae), attack its predators, Kontyu, 52 (1984), 458-460. 

[2]

R. BanerjeeP. Das and D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos, Solitons & Fractals, 117 (2018), 240-248.  doi: 10.1016/j.chaos.2018.10.032.

[3]

R. BanerjeeP. Das and D. Mukherjee, Global dynamics of a Holling Type-Ⅲ two prey–one predator discrete model with optimal harvest strategy, Nonlinear Dynamics, 99 (2020), 3285-3300.  doi: 10.1007/s11071-020-05490-0.

[4]

M. C. and A. Barkai, Predator-prey role reversal in a marine benthic ecosystem, Science, (1988), 62–64.

[5]

M. ClinchyM. J. Sheriff and L. Y. Zanette, Predator-induced stress and the ecology of fear, Functional Ecology, 27 (2013), 56-65.  doi: 10.1111/1365-2435.12007.

[6]

R. Kaushik and S. Banerjee, Predator-prey system: Prey's counter-attack on juvenile predators shows opposite side of the same ecological coin, Applied Mathematics and Computation, 388 (2021), 125530. doi: 10.1016/j.amc.2020.125530.

[7]

R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment, The American Naturalist, 100 (1966), 603-609.  doi: 10.1086/282454.

[8]

R. J. Mrowicki and N. E. O'Connor, Wave action modifies the effects of consumer diversity and warming on algal assemblages, Ecology, 96 (2015), 1020-1029.  doi: 10.1890/14-0577.1.

[9]

P. Panday, N. Pal, S. Samanta and J. Chattopadhyay, A three species food chain model with fear induced trophic cascade, Int. J. Appl. Comput. Math., 5 (2019), 26 pp. doi: 10.1007/s40819-019-0688-x.

[10]

P. PanjaS. Jana and S. k. Mondal, Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey, Numerical Algebra, Control & Optimization, 11 (2021), 391-405.  doi: 10.3934/naco.2020033.

[11]

W. Ripple, L. Painter, R. Beschta and C. Gates, Wolves, elk, bison, and secondary trophic cascades in Yellowstone National Park, The Open Ecology Journal, 3 (2010).

[12]

W. J. Ripple and R. L. Beschta, Wolves and the ecology of fear: Can predation risk structure ecosystems?, BioScience, 54 (2004), 755-766. 

[13]

W. J. Ripple and R. L. Beschta, Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction, Biological Conservation, 145 (2012), 205-213. 

[14]

Y. Saito, Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator, Experimental & Applied Acarology, 2 (1986), 47-62.  doi: 10.1007/BF01193354.

[15]

O. J. SchmitzA. P. Beckerman and K. M. O'Brien, Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions, Ecology, 78 (1997), 1388-1399. 

[16]

Y. N. P. Service, \em 2019 Late Winter Survey of Northern Yellowstone Elk, 2019. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm.

[17]

Y. N. P. Service, \em Questions & Answers About Bison Management, 2021. Available from: https://www.nps.gov/yell/learn/news/2019-late-winter-survey-of-northern-yellowstone-elk.htm.

[18]

D. W. SmithL. D. MechM. MeagherW. E. ClarkR. JaffeM. K. Phillips and J. A. Mack, Wolf–bison interactions in Yellowstone National Park, Journal of Mammalogy, 81 (2000), 1128-1135. 

[19]

J. P. Suraci, M. Clinchy, L. M. Dill, D. Roberts and L. Y. Zanette, Fear of large carnivores causes a trophic cascade, Nat Commun., 7 (2016), 10698.

[20]

V. Tiwari, J. P. Tripathi, S. Mishra and R. K. Upadhyay, Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems, Applied Mathematics and Computation, 371 (2020), 124948. doi: 10.1016/j.amc.2019.124948.

[21]

H. ZhangY. CaiS. Fu and W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Applied Mathematics and Computation, 356 (2019), 328-337.  doi: 10.1016/j.amc.2019.03.034.

Figure 1.  Existence of the equilibrium point $ E_5(0, x_2', z') $ of system (2) with the parameter values $ r_2 = 2, b_2 = 1 , \beta = 1.5, g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, m = 0.025, c_2 = 1 $. For the chosen parameters the conditions of Theorem 1 are verified with $ Q = 8.73724>0 $, $ S = -2.89871<0 $
Figure 2.  Time series of (2) with the parameter values $ r_1 = 1, h = 1, p = 1, q = 0.01, b_1 = 0.6, b_2 = 0.6, g_1 = 0.02, g_2 = 0.03, d = 1, d_1 = 0.02, \alpha = 5, \beta = 1.5, m = 0.01, c_1 = 0.3, c_2 = 0.3, \tau_1 = 2, \tau_2 = 2 $
Figure 3.  Phase portraits and time series of (2) with the parameter values $ r_1 = 2 , h = 3.8, p = 0.3 , q = 0.6, , b_1 = 1.5, b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, m = 0.025, c_2 = 1, c_1 = 1.4, \tau_1 = 2, \tau_2 = 2 $
Figure 4.  Bifurcation diagram and chaos 0-1 test of system (2) with the parameter values $ r_1 = 2 , h = 3.8, p = 0.3 , q = 0.6, , b_1 = 1.5, b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, m = 0.025, c_2 = 1, c_1 = 1.4, \tau_1 = 2, \tau_2 = 2 $, showing the existence of chaos with increase in $ r_2 $
Figure 5.  Stability region of system (2) for the varying parameters $ r_2 $ and $ m $. The system shows stable dynamics in region A, period-2 oscillations in region B, period-4 oscillations in region C, period-3 oscillations in region D and chaotic dynamics in region E
Figure 6.  Bifurcation diagram and chaos 0-1 test of system (2) with the parameter values $ r_1 = 2 , p = 0.3 , q = 0.6, b_1 = 1.5, b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 5, c_2 = 1, c_1 = 1.4, \tau_1 = 2, \tau_2 = 2 $
Figure 7.  $ (p, q) $ plots for varying values of $ \tau_{1, 2} $ with the parameter values $ r_1 = 2, r_2 = 3.7, p = 0.3 , q = 0.6 , b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 1, c_2 = 1, c_1 = 1.4, b_1 = 1.5, h = 0.5, m = 3.265 $
Figure 8.  $ (p, q) $ plots for varying values of $ r_2 $ with the parameter values $ r_1 = 2, p = 0.3 , q = 0.6 , b_2 = 1 , \beta = 1.5 , g_1 = 0.08 , g_2 = 0.03 , d = 1 , d_1 = 0.1 , \alpha = 1, c_2 = 1, c_1 = 1.4, b_1 = 1.5, h = 1, m = 2, \tau_{1} = 2, \tau_2 = 2 $
[1]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[2]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[3]

Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022017

[4]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[5]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[6]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[7]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[8]

Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure and Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032

[9]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[10]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[11]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[12]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[13]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[14]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[15]

Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221

[16]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

[17]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047

[18]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[19]

Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211

[20]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (606)
  • HTML views (404)
  • Cited by (0)

Other articles
by authors

[Back to Top]