doi: 10.3934/dcdsb.2021204
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Tian Zhang

Received  January 2021 Revised  June 2021 Early access August 2021

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant No. 12071428 and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ20A010002

This paper focuses on the $ p $th moment and almost sure stability with general decay rate (including exponential decay, polynomial decay, and logarithmic decay) of highly nonlinear hybrid neutral stochastic pantograph differential equations driven by L$ \acute{e} $vy noise (NSPDEs-LN). The crucial techniques used are the Lyapunov functions and the nonnegative semi-martingale convergence theorem. Simultaneously, the diffusion operators are permitted to be controlled by several additional functions with time-varying coefficients, which can be applied to a broad class of the non-autonomous hybrid NSPDEs-LN with highly nonlinear coefficients. Besides, $ H_\infty $ stability and the almost sure asymptotic stability are also concerned. Finally, two examples are offered to illustrate the validity of the obtained theory.

Citation: Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021204
References:
[1]

J. A. D. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Proceedings of the 10'th Colloquium on the Qualitative Theory of Differential Equations, 2 (2016), 32 pp. doi: 10.14232/ejqtde.2016.8.2.  Google Scholar

[2]

T. CaraballoM. J. Garrido-Atinenza and J. Real, Stochastic stabilization of differential systems with general decay rate, Syst. Control Lett., 48 (2003), 397-406.  doi: 10.1016/S0167-6911(02)00293-1.  Google Scholar

[3]

H. Chen and C. Yuan, On the asymptotic behavior for neutral stochastic differential delay equations, IEEE Trans. Automat. Control, 64 (2019), 1671-1678.  doi: 10.1109/TAC.2018.2852607.  Google Scholar

[4]

Z. FanM. Liu and W. Cao, Existence and uniqueness of the solutions and convergence of semi-implicit euler methods for stochastic pantograph equations, J. Math. Anal. Appl., 325 (2007), 1142-1159.  doi: 10.1016/j.jmaa.2006.02.063.  Google Scholar

[5]

Z. FanM. Song and M. Liu, The $\alpha$th moment stability for the stochastic pantograph equation, J. Comput. Appl. Math., 233 (2009), 109-120.  doi: 10.1016/j.cam.2009.04.024.  Google Scholar

[6]

P. Guo and C.-J. Li, Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations, BIT, 59 (2019), 77-96.  doi: 10.1007/s10543-018-0723-z.  Google Scholar

[7]

P. Guo and C.-J. Li, Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations, Numer. Algorithms, 80 (2019), 1391-1411.  doi: 10.1007/s11075-018-0531-1.  Google Scholar

[8]

Q. GuoX. Mao and R. Yue, Almost sure exponential stability of stochastic differential delay equations, SIAM J. Control Optim., 54 (2016), 1919-1933.  doi: 10.1137/15M1019465.  Google Scholar

[9]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, Berlin, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[10]

L. HuX. Mao and Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control Lett., 62 (2013), 178-187.  doi: 10.1016/j.sysconle.2012.11.009.  Google Scholar

[11]

L. Hu, Y. Ren and Q. He, Pantograph stochastic differential equations driven by $G$-Brownian motion, J. Math. Anal. Appl., 480 (2019), 123381, 11 pp. doi: 10.1016/j.jmaa.2019.123381.  Google Scholar

[12]

A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1-38.  doi: 10.1017/S0956792500000966.  Google Scholar

[13]

A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, J. Lond. Math. Soc., 51 (1995), 559-572.  doi: 10.1112/jlms/51.3.559.  Google Scholar

[14]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer Science & Business Media, 2013. Google Scholar

[15]

B. LiD. Li and D. Xu, Stability analysis for impulsive stochastic delay differential equations with Markovian switching, J. Frankl. Institut., 350 (2013), 1848-1864.  doi: 10.1016/j.jfranklin.2013.05.009.  Google Scholar

[16]

M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with L$\acute{e}$vy noise, Nonlinear Anal. Hybrid Syst., 24 (2017), 171-185.  doi: 10.1016/j.nahs.2017.01.001.  Google Scholar

[17]

R. LiM. Liu and W. Pang, Convergence of numerical solutions to stochastic pantograph equations with Markovian switching, Appl. Math. Comput., 215 (2009), 414-422.  doi: 10.1016/j.amc.2009.05.013.  Google Scholar

[18]

J. Liu, Z.-Y. Li and F. Deng, Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems, Appl. Math. Comput., 404 (2021), 126205, 14 pp. doi: 10.1016/j.amc.2021.126205.  Google Scholar

[19]

J. Liu and J. Zhou, Convergence rate of Euler-Maruyama scheme for stochastic pantograph differential equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1697-1705.  doi: 10.1016/j.cnsns.2013.10.015.  Google Scholar

[20]

L. Liu and F. Deng, $p$th moment exponential stability of highly nonlinear neutral pantograph stochastic differential equations driven by L$\acute{e}$vy noise, Appl. Math. Lett., 86 (2018), 313-319.  doi: 10.1016/j.aml.2018.07.003.  Google Scholar

[21]

M. LiuZ. Yang and G. Hu, Asymptotical stability of the numerical methods with the constant step size for the pantograph equation, BIT, 45 (2005), 743-759.  doi: 10.1007/s10543-005-0022-3.  Google Scholar

[22]

J. Luo, A note on exponential stability in $p$th mean of solutions of stochastic delay differential equations, J. Computat. Appl. Math., 198 (2007), 143-148.  doi: 10.1016/j.cam.2005.11.019.  Google Scholar

[23]

W. Mao, L. Hu and X. Mao, Almost sure stability with general decay rate of neutral stochastic pantograph equations with Markovian switching, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 52, 17 pp. doi: 10.14232/ejqtde.2019.1.52.  Google Scholar

[24]

W. MaoL. Hu and X. Mao, The asymptotic stability of hybrid stochastic systems with pantograph delay and non-Gaussian L$\acute{e}$vy noise, J. Frankl. Inst., 357 (2020), 1174-1198.  doi: 10.1016/j.jfranklin.2019.11.068.  Google Scholar

[25]

X. Mao, Robustness of exponential stability of stochastic differential delay equations, IEEE Trans. Automat. Control, 41 (1996), 442-447.  doi: 10.1109/9.486647.  Google Scholar

[26]

X. MaoY. Shen and C. Yuan, Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching, Stochastic Process. Appl., 118 (2008), 1385-1406.  doi: 10.1016/j.spa.2007.09.005.  Google Scholar

[27] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithcing, Imperial College Press, London, UK, 2006.  doi: 10.1142/p473.  Google Scholar
[28]

M. Milo$\check{s}$evi$\acute{c}$ and M. Jovanovi$\acute{c}$, A Taylor polynomial approach in approximations of solution to pantograph stochastic differential equations with Markovian switching, Math. Comput. Model., 53 (2011), 280-293.  doi: 10.1016/j.mcm.2010.08.016.  Google Scholar

[29]

G. Pavlovi$\acute{c}$ and S. Jankovi$\acute{c}$, The Razumikhin approach on general decay stability for neutral stochastic functional differential equations, J. Frankl. Institut., 350 (2013), 2124-2145.  doi: 10.1016/j.jfranklin.2013.05.025.  Google Scholar

[30]

G. Shen, W. Xu and D. Zhu, The stability with general decay rate of neutral stochastic functional hybrid differential equations with L$\acute{e}$vy noise, Syst. Control Lett., 143 (2020), 104742, 9 pp. doi: 10.1016/j.sysconle.2020.104742.  Google Scholar

[31]

M. ShenW. FeiX. Mao and S. Deng, Exponential stability of highly nonlinear neutral pantograph stochastic differential equations, Asian J. Control, 22 (2020), 436-448.  doi: 10.1002/asjc.1903.  Google Scholar

[32]

A. Wu, S. You, W. Mao, X. Mao and L. Hu, On exponential stability of hybrid neutral stochastic differential delay equations with different structures, Nonlinear Anal. Hybrid Syst., 39 (2021), 100971, 17 pp. doi: 10.1016/j.nahs.2020.100971.  Google Scholar

[33]

F. Wu and S. Hu, Razumikhin-type theorems on general decay stability and robustness for stochastic functional differential equations, Int. J. Robust Nonlinear Control, 22 (2012), 763-777.  doi: 10.1002/rnc.1726.  Google Scholar

[34]

F. WuS. Hu and C. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, Syst. Control Lett., 59 (2010), 195-202.  doi: 10.1016/j.sysconle.2010.01.004.  Google Scholar

[35]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715-1734.  doi: 10.3934/dcdsb.2013.18.1715.  Google Scholar

[36]

Y. Xiao and H. Zhang, Convergence and stability of numerical methods with variable step size for stochastic pantograph differential equations, Int. J. Comput. Math., 88 (2011), 2955-2968.  doi: 10.1080/00207160.2011.563843.  Google Scholar

[37]

L. Xu and H. Hu, Boundedness analysis of stochastic pantograph differential systems, Appl. Math. Lett., 111 (2021), 106630, 7 pp. doi: 10.1016/j.aml.2020.106630.  Google Scholar

[38]

H. YangZ. YangP. Wang and D. Han, Mean-square stability analysis for nonlinear stochastic pantograph equations by transformation approach, J. Math. Anal. Appl., 479 (2019), 977-986.  doi: 10.1016/j.jmaa.2019.06.061.  Google Scholar

[39]

S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905-925.  doi: 10.1137/140985779.  Google Scholar

[40]

S. YouW. MaoX. Mao and L. Hu, Analysis on exponential stability of highly pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015), 73-83.  doi: 10.1016/j.amc.2015.04.022.  Google Scholar

[41]

H. Yuan and C. Song, Convergence and stability of exponential integrators for semi-linear stochastic pantograph integro-differential equations with jump, Chaos, Solitons and Fractals, 140 (2020), 110172, 18 pp. doi: 10.1016/j.chaos.2020.110172.  Google Scholar

[42]

H. ZhangY. Xiao and F. Guo, Convergence and stability of a numerical method for nonlinear stochastic pantograph equations, J. Frankl. Inst., 351 (2014), 3089-3103.  doi: 10.1016/j.jfranklin.2014.02.004.  Google Scholar

[43]

T. Zhang and H. Chen, The stability with a general decay of stochastic delay differential equations with Markovian switching, Appl. Math. Comput., 359 (2019), 294-307.  doi: 10.1016/j.amc.2019.04.057.  Google Scholar

[44]

T. ZhangH. ChenC. Yuan and T. Caraballo, On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5355-5375.  doi: 10.3934/dcdsb.2019062.  Google Scholar

[45]

W. ZhangJ. Ye and H. Li, Stability with general decay rates of stochastic differential delay equations with Poisson jumps and Markovian switching, Statist. Probab. Lett., 92 (2014), 1-11.  doi: 10.1016/j.spl.2014.04.024.  Google Scholar

[46]

X. Zhao and F. Deng, Moment stability of nonlinear stochastic systems with time delays based on $\mathcal{H}$-representation technique, IEEE Trans. Automat. Control, 59 (2014), 814-819.  doi: 10.1109/TAC.2013.2279909.  Google Scholar

[47]

S. Zhou and Y. Hu, Numerical approximation for nonlinear stochastic pantograph equations with Markovian switching, Appl. Math. Comput., 286 (2016), 126-138.  doi: 10.1016/j.amc.2016.03.040.  Google Scholar

[48]

S. Zhou and M. Xue, Exponential stability for nonlinear hybrid stochastic pantograph equations and numerical approximation, Acta Math. Sci. Ser. B (Engl. Ed.), 34 (2014), 1254-1270.  doi: 10.1016/S0252-9602(14)60083-7.  Google Scholar

[49]

Q. Zhu and Q. Zhang, $p$th moment exponential stabilisation of hybrid stochastic differential equations by feedback controls based on discrete-time state observations with a time delay, IET Control Theory Appl., 11 (2017), 1992-2003.  doi: 10.1049/iet-cta.2017.0181.  Google Scholar

[50]

X. ZongG. YinL. Y. WangT. Li and J.-F. Zhang, Stability of stochastic functional differential systems using degenerate Lyapunov functionals and applications, Automatica J. IFAC, 91 (2018), 197-207.  doi: 10.1016/j.automatica.2018.01.038.  Google Scholar

show all references

References:
[1]

J. A. D. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Proceedings of the 10'th Colloquium on the Qualitative Theory of Differential Equations, 2 (2016), 32 pp. doi: 10.14232/ejqtde.2016.8.2.  Google Scholar

[2]

T. CaraballoM. J. Garrido-Atinenza and J. Real, Stochastic stabilization of differential systems with general decay rate, Syst. Control Lett., 48 (2003), 397-406.  doi: 10.1016/S0167-6911(02)00293-1.  Google Scholar

[3]

H. Chen and C. Yuan, On the asymptotic behavior for neutral stochastic differential delay equations, IEEE Trans. Automat. Control, 64 (2019), 1671-1678.  doi: 10.1109/TAC.2018.2852607.  Google Scholar

[4]

Z. FanM. Liu and W. Cao, Existence and uniqueness of the solutions and convergence of semi-implicit euler methods for stochastic pantograph equations, J. Math. Anal. Appl., 325 (2007), 1142-1159.  doi: 10.1016/j.jmaa.2006.02.063.  Google Scholar

[5]

Z. FanM. Song and M. Liu, The $\alpha$th moment stability for the stochastic pantograph equation, J. Comput. Appl. Math., 233 (2009), 109-120.  doi: 10.1016/j.cam.2009.04.024.  Google Scholar

[6]

P. Guo and C.-J. Li, Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations, BIT, 59 (2019), 77-96.  doi: 10.1007/s10543-018-0723-z.  Google Scholar

[7]

P. Guo and C.-J. Li, Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations, Numer. Algorithms, 80 (2019), 1391-1411.  doi: 10.1007/s11075-018-0531-1.  Google Scholar

[8]

Q. GuoX. Mao and R. Yue, Almost sure exponential stability of stochastic differential delay equations, SIAM J. Control Optim., 54 (2016), 1919-1933.  doi: 10.1137/15M1019465.  Google Scholar

[9]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, Berlin, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[10]

L. HuX. Mao and Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control Lett., 62 (2013), 178-187.  doi: 10.1016/j.sysconle.2012.11.009.  Google Scholar

[11]

L. Hu, Y. Ren and Q. He, Pantograph stochastic differential equations driven by $G$-Brownian motion, J. Math. Anal. Appl., 480 (2019), 123381, 11 pp. doi: 10.1016/j.jmaa.2019.123381.  Google Scholar

[12]

A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1-38.  doi: 10.1017/S0956792500000966.  Google Scholar

[13]

A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, J. Lond. Math. Soc., 51 (1995), 559-572.  doi: 10.1112/jlms/51.3.559.  Google Scholar

[14]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer Science & Business Media, 2013. Google Scholar

[15]

B. LiD. Li and D. Xu, Stability analysis for impulsive stochastic delay differential equations with Markovian switching, J. Frankl. Institut., 350 (2013), 1848-1864.  doi: 10.1016/j.jfranklin.2013.05.009.  Google Scholar

[16]

M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with L$\acute{e}$vy noise, Nonlinear Anal. Hybrid Syst., 24 (2017), 171-185.  doi: 10.1016/j.nahs.2017.01.001.  Google Scholar

[17]

R. LiM. Liu and W. Pang, Convergence of numerical solutions to stochastic pantograph equations with Markovian switching, Appl. Math. Comput., 215 (2009), 414-422.  doi: 10.1016/j.amc.2009.05.013.  Google Scholar

[18]

J. Liu, Z.-Y. Li and F. Deng, Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems, Appl. Math. Comput., 404 (2021), 126205, 14 pp. doi: 10.1016/j.amc.2021.126205.  Google Scholar

[19]

J. Liu and J. Zhou, Convergence rate of Euler-Maruyama scheme for stochastic pantograph differential equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1697-1705.  doi: 10.1016/j.cnsns.2013.10.015.  Google Scholar

[20]

L. Liu and F. Deng, $p$th moment exponential stability of highly nonlinear neutral pantograph stochastic differential equations driven by L$\acute{e}$vy noise, Appl. Math. Lett., 86 (2018), 313-319.  doi: 10.1016/j.aml.2018.07.003.  Google Scholar

[21]

M. LiuZ. Yang and G. Hu, Asymptotical stability of the numerical methods with the constant step size for the pantograph equation, BIT, 45 (2005), 743-759.  doi: 10.1007/s10543-005-0022-3.  Google Scholar

[22]

J. Luo, A note on exponential stability in $p$th mean of solutions of stochastic delay differential equations, J. Computat. Appl. Math., 198 (2007), 143-148.  doi: 10.1016/j.cam.2005.11.019.  Google Scholar

[23]

W. Mao, L. Hu and X. Mao, Almost sure stability with general decay rate of neutral stochastic pantograph equations with Markovian switching, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 52, 17 pp. doi: 10.14232/ejqtde.2019.1.52.  Google Scholar

[24]

W. MaoL. Hu and X. Mao, The asymptotic stability of hybrid stochastic systems with pantograph delay and non-Gaussian L$\acute{e}$vy noise, J. Frankl. Inst., 357 (2020), 1174-1198.  doi: 10.1016/j.jfranklin.2019.11.068.  Google Scholar

[25]

X. Mao, Robustness of exponential stability of stochastic differential delay equations, IEEE Trans. Automat. Control, 41 (1996), 442-447.  doi: 10.1109/9.486647.  Google Scholar

[26]

X. MaoY. Shen and C. Yuan, Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching, Stochastic Process. Appl., 118 (2008), 1385-1406.  doi: 10.1016/j.spa.2007.09.005.  Google Scholar

[27] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithcing, Imperial College Press, London, UK, 2006.  doi: 10.1142/p473.  Google Scholar
[28]

M. Milo$\check{s}$evi$\acute{c}$ and M. Jovanovi$\acute{c}$, A Taylor polynomial approach in approximations of solution to pantograph stochastic differential equations with Markovian switching, Math. Comput. Model., 53 (2011), 280-293.  doi: 10.1016/j.mcm.2010.08.016.  Google Scholar

[29]

G. Pavlovi$\acute{c}$ and S. Jankovi$\acute{c}$, The Razumikhin approach on general decay stability for neutral stochastic functional differential equations, J. Frankl. Institut., 350 (2013), 2124-2145.  doi: 10.1016/j.jfranklin.2013.05.025.  Google Scholar

[30]

G. Shen, W. Xu and D. Zhu, The stability with general decay rate of neutral stochastic functional hybrid differential equations with L$\acute{e}$vy noise, Syst. Control Lett., 143 (2020), 104742, 9 pp. doi: 10.1016/j.sysconle.2020.104742.  Google Scholar

[31]

M. ShenW. FeiX. Mao and S. Deng, Exponential stability of highly nonlinear neutral pantograph stochastic differential equations, Asian J. Control, 22 (2020), 436-448.  doi: 10.1002/asjc.1903.  Google Scholar

[32]

A. Wu, S. You, W. Mao, X. Mao and L. Hu, On exponential stability of hybrid neutral stochastic differential delay equations with different structures, Nonlinear Anal. Hybrid Syst., 39 (2021), 100971, 17 pp. doi: 10.1016/j.nahs.2020.100971.  Google Scholar

[33]

F. Wu and S. Hu, Razumikhin-type theorems on general decay stability and robustness for stochastic functional differential equations, Int. J. Robust Nonlinear Control, 22 (2012), 763-777.  doi: 10.1002/rnc.1726.  Google Scholar

[34]

F. WuS. Hu and C. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, Syst. Control Lett., 59 (2010), 195-202.  doi: 10.1016/j.sysconle.2010.01.004.  Google Scholar

[35]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715-1734.  doi: 10.3934/dcdsb.2013.18.1715.  Google Scholar

[36]

Y. Xiao and H. Zhang, Convergence and stability of numerical methods with variable step size for stochastic pantograph differential equations, Int. J. Comput. Math., 88 (2011), 2955-2968.  doi: 10.1080/00207160.2011.563843.  Google Scholar

[37]

L. Xu and H. Hu, Boundedness analysis of stochastic pantograph differential systems, Appl. Math. Lett., 111 (2021), 106630, 7 pp. doi: 10.1016/j.aml.2020.106630.  Google Scholar

[38]

H. YangZ. YangP. Wang and D. Han, Mean-square stability analysis for nonlinear stochastic pantograph equations by transformation approach, J. Math. Anal. Appl., 479 (2019), 977-986.  doi: 10.1016/j.jmaa.2019.06.061.  Google Scholar

[39]

S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905-925.  doi: 10.1137/140985779.  Google Scholar

[40]

S. YouW. MaoX. Mao and L. Hu, Analysis on exponential stability of highly pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015), 73-83.  doi: 10.1016/j.amc.2015.04.022.  Google Scholar

[41]

H. Yuan and C. Song, Convergence and stability of exponential integrators for semi-linear stochastic pantograph integro-differential equations with jump, Chaos, Solitons and Fractals, 140 (2020), 110172, 18 pp. doi: 10.1016/j.chaos.2020.110172.  Google Scholar

[42]

H. ZhangY. Xiao and F. Guo, Convergence and stability of a numerical method for nonlinear stochastic pantograph equations, J. Frankl. Inst., 351 (2014), 3089-3103.  doi: 10.1016/j.jfranklin.2014.02.004.  Google Scholar

[43]

T. Zhang and H. Chen, The stability with a general decay of stochastic delay differential equations with Markovian switching, Appl. Math. Comput., 359 (2019), 294-307.  doi: 10.1016/j.amc.2019.04.057.  Google Scholar

[44]

T. ZhangH. ChenC. Yuan and T. Caraballo, On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5355-5375.  doi: 10.3934/dcdsb.2019062.  Google Scholar

[45]

W. ZhangJ. Ye and H. Li, Stability with general decay rates of stochastic differential delay equations with Poisson jumps and Markovian switching, Statist. Probab. Lett., 92 (2014), 1-11.  doi: 10.1016/j.spl.2014.04.024.  Google Scholar

[46]

X. Zhao and F. Deng, Moment stability of nonlinear stochastic systems with time delays based on $\mathcal{H}$-representation technique, IEEE Trans. Automat. Control, 59 (2014), 814-819.  doi: 10.1109/TAC.2013.2279909.  Google Scholar

[47]

S. Zhou and Y. Hu, Numerical approximation for nonlinear stochastic pantograph equations with Markovian switching, Appl. Math. Comput., 286 (2016), 126-138.  doi: 10.1016/j.amc.2016.03.040.  Google Scholar

[48]

S. Zhou and M. Xue, Exponential stability for nonlinear hybrid stochastic pantograph equations and numerical approximation, Acta Math. Sci. Ser. B (Engl. Ed.), 34 (2014), 1254-1270.  doi: 10.1016/S0252-9602(14)60083-7.  Google Scholar

[49]

Q. Zhu and Q. Zhang, $p$th moment exponential stabilisation of hybrid stochastic differential equations by feedback controls based on discrete-time state observations with a time delay, IET Control Theory Appl., 11 (2017), 1992-2003.  doi: 10.1049/iet-cta.2017.0181.  Google Scholar

[50]

X. ZongG. YinL. Y. WangT. Li and J.-F. Zhang, Stability of stochastic functional differential systems using degenerate Lyapunov functionals and applications, Automatica J. IFAC, 91 (2018), 197-207.  doi: 10.1016/j.automatica.2018.01.038.  Google Scholar

Figure 1.  Poisson jump process
Figure 2.  State trajectories of two subsystems
Figure 3.  State trajectory of whole system
Figure 4.  Poisson jump process
Figure 5.  State trajectories of two subsystems
Figure 6.  State trajectory of whole system
[1]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[2]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[3]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[4]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

[5]

Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021207

[6]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[7]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[8]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[9]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[10]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[11]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[12]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[13]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[14]

Justin Cyr, Phuong Nguyen, Sisi Tang, Roger Temam. Review of local and global existence results for stochastic pdes with Lévy noise. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5639-5710. doi: 10.3934/dcds.2020241

[15]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[16]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[17]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

[18]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[19]

Mahmoud Abouagwa, Ji Li. G-neutral stochastic differential equations with variable delay and non-Lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1583-1606. doi: 10.3934/dcdsb.2019241

[20]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (59)
  • HTML views (110)
  • Cited by (0)

Other articles
by authors

[Back to Top]