• Previous Article
    Modeling the influence of human population and human population augmented pollution on rainfall
  • DCDS-B Home
  • This Issue
  • Next Article
    Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays
doi: 10.3934/dcdsb.2021205
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation

1. 

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

2. 

Graduate School of China Academy of Engineering Physics, Beijing 100088, China

* Corresponding author: Jun Wu

Received  February 2021 Revised  June 2021 Early access August 2021

The main purpose of this paper is to study local regularity properties of the fourth-order nonlinear Schrödinger equations on the half line. We prove the local existence, uniqueness, and continuous dependence on initial data in low regularity Sobolev spaces. We also obtain the nonlinear smoothing property: the nonlinear part of the solution on the half line is smoother than the initial data.

Citation: Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021205
References:
[1]

J. L. BonaS. M. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[2]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436.  doi: 10.1081/PDE-120024373.  Google Scholar

[3]

J. L. BonaS.-M. Sun and B.-Y. Zhang, Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations, J. Math. Pures Appl., 109 (2018), 1-66.  doi: 10.1016/j.matpur.2017.11.001.  Google Scholar

[4]

J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 107–156,209–262. doi: 10.1007/BF01895688.  Google Scholar

[5]

R. de A. Capistrano–FilhoM. Cavalcante and F. A. Gallego, Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane, Pacific J. Math., 309 (2020), 35-70.  doi: 10.2140/pjm.2020.309.35.  Google Scholar

[6]

M. Chen and S. Zhang, Random data Cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities, Nonlinear Anal., 190 (2020), 111608, 23 pp. doi: 10.1016/j.na.2019.111608.  Google Scholar

[7]

J. E. Colliander and C. E. Kenig, The generalized Korteweg-de Vries equation on the half line, Comm. Partial Differential Equations, 27 (2002), 2187-2266.  doi: 10.1081/PDE-120016157.  Google Scholar

[8]

E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good'' Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.  doi: 10.1016/j.jde.2017.02.016.  Google Scholar

[9]

M. DanielL. Kavitha and R. Amuda, Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction, Phys. Rev. B, 59 (1999), 13774-13781.  doi: 10.1103/PhysRevB.59.13774.  Google Scholar

[10]

T. A. Davydova and Y. A. Zaliznyak, Schrödinger ordinary solitons and chirped solitons: Fourth-order dispersive effects and cubic-quintic nonlinearity, Phys. D, 156 (2001), 260-282.  doi: 10.1016/S0167-2789(01)00269-X.  Google Scholar

[11]

M. B. EdroǧanT. B. Gürel and N. Tzirakis, The derivative nonlinear Schrödinger equation on the half line, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1947-1973.  doi: 10.1016/j.anihpc.2018.03.006.  Google Scholar

[12]

M. B. Erdoǧan and N. Tzirakis, Regularity properties of the cubic nonlinear Schrödinger equation on the half line, J. Funct. Aanl., 271 (2016), 2539-2568.  doi: 10.1016/j.jfa.2016.08.012.  Google Scholar

[13]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[14]

H. Hirayama and M. Okamoto, Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity, Commun. Pure Appl. Anal., 15 (2016), 831-851.  doi: 10.3934/cpaa.2016.15.831.  Google Scholar

[15]

J. Holmer, The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations, 18 (2005), 647-668.   Google Scholar

[16]

J. Holmer, The initial-boundary value problem for Korteweg-de Vries equation, Comm. Partial Differential Equations, 31 (2006), 1151-1190.  doi: 10.1080/03605300600718503.  Google Scholar

[17]

Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differential Equations, 214 (2005), 1-35.  doi: 10.1016/j.jde.2004.09.005.  Google Scholar

[18]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Comm. Partial Differential Equations, 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar

[19]

Z. Huo and Y. Jia, Well-posedness for the fourth-order nonlinear derivative Schrödinger equation in higher dimension, J. Math. Pures Appl., 96 (2011), 190-206.  doi: 10.1016/j.matpur.2011.01.002.  Google Scholar

[20]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[21]

V. I. Karpman and A. G. Shagalov, Solitons and their stability in high dispersive systems. I. Fourth-order nonlinear Schrödinger-type equations with power-law nonlinearities, Phys. Lett. A, 228 (1997), 59-65.  doi: 10.1016/S0375-9601(97)00063-7.  Google Scholar

[22]

C. E. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.  doi: 10.1512/iumj.1991.40.40003.  Google Scholar

[23]

C. E. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[24]

C. E. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[25]

C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal., 29 (1997), 121-158.  doi: 10.1016/S0362-546X(96)00081-8.  Google Scholar

[26]

T. Özsari and N. Yolcu, The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line, Commun. Pure Appl. Anal., 18 (2019), 3285-3316.  doi: 10.3934/cpaa.2019148.  Google Scholar

[27]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[28]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[29]

M. RuzhanskyB. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.  doi: 10.1016/j.matpur.2015.09.005.  Google Scholar

[30]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.   Google Scholar

show all references

References:
[1]

J. L. BonaS. M. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[2]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436.  doi: 10.1081/PDE-120024373.  Google Scholar

[3]

J. L. BonaS.-M. Sun and B.-Y. Zhang, Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations, J. Math. Pures Appl., 109 (2018), 1-66.  doi: 10.1016/j.matpur.2017.11.001.  Google Scholar

[4]

J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 107–156,209–262. doi: 10.1007/BF01895688.  Google Scholar

[5]

R. de A. Capistrano–FilhoM. Cavalcante and F. A. Gallego, Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane, Pacific J. Math., 309 (2020), 35-70.  doi: 10.2140/pjm.2020.309.35.  Google Scholar

[6]

M. Chen and S. Zhang, Random data Cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities, Nonlinear Anal., 190 (2020), 111608, 23 pp. doi: 10.1016/j.na.2019.111608.  Google Scholar

[7]

J. E. Colliander and C. E. Kenig, The generalized Korteweg-de Vries equation on the half line, Comm. Partial Differential Equations, 27 (2002), 2187-2266.  doi: 10.1081/PDE-120016157.  Google Scholar

[8]

E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good'' Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.  doi: 10.1016/j.jde.2017.02.016.  Google Scholar

[9]

M. DanielL. Kavitha and R. Amuda, Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction, Phys. Rev. B, 59 (1999), 13774-13781.  doi: 10.1103/PhysRevB.59.13774.  Google Scholar

[10]

T. A. Davydova and Y. A. Zaliznyak, Schrödinger ordinary solitons and chirped solitons: Fourth-order dispersive effects and cubic-quintic nonlinearity, Phys. D, 156 (2001), 260-282.  doi: 10.1016/S0167-2789(01)00269-X.  Google Scholar

[11]

M. B. EdroǧanT. B. Gürel and N. Tzirakis, The derivative nonlinear Schrödinger equation on the half line, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1947-1973.  doi: 10.1016/j.anihpc.2018.03.006.  Google Scholar

[12]

M. B. Erdoǧan and N. Tzirakis, Regularity properties of the cubic nonlinear Schrödinger equation on the half line, J. Funct. Aanl., 271 (2016), 2539-2568.  doi: 10.1016/j.jfa.2016.08.012.  Google Scholar

[13]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[14]

H. Hirayama and M. Okamoto, Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity, Commun. Pure Appl. Anal., 15 (2016), 831-851.  doi: 10.3934/cpaa.2016.15.831.  Google Scholar

[15]

J. Holmer, The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations, 18 (2005), 647-668.   Google Scholar

[16]

J. Holmer, The initial-boundary value problem for Korteweg-de Vries equation, Comm. Partial Differential Equations, 31 (2006), 1151-1190.  doi: 10.1080/03605300600718503.  Google Scholar

[17]

Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differential Equations, 214 (2005), 1-35.  doi: 10.1016/j.jde.2004.09.005.  Google Scholar

[18]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Comm. Partial Differential Equations, 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar

[19]

Z. Huo and Y. Jia, Well-posedness for the fourth-order nonlinear derivative Schrödinger equation in higher dimension, J. Math. Pures Appl., 96 (2011), 190-206.  doi: 10.1016/j.matpur.2011.01.002.  Google Scholar

[20]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[21]

V. I. Karpman and A. G. Shagalov, Solitons and their stability in high dispersive systems. I. Fourth-order nonlinear Schrödinger-type equations with power-law nonlinearities, Phys. Lett. A, 228 (1997), 59-65.  doi: 10.1016/S0375-9601(97)00063-7.  Google Scholar

[22]

C. E. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.  doi: 10.1512/iumj.1991.40.40003.  Google Scholar

[23]

C. E. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[24]

C. E. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[25]

C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal., 29 (1997), 121-158.  doi: 10.1016/S0362-546X(96)00081-8.  Google Scholar

[26]

T. Özsari and N. Yolcu, The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line, Commun. Pure Appl. Anal., 18 (2019), 3285-3316.  doi: 10.3934/cpaa.2019148.  Google Scholar

[27]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[28]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[29]

M. RuzhanskyB. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.  doi: 10.1016/j.matpur.2015.09.005.  Google Scholar

[30]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.   Google Scholar

[1]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021156

[2]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[3]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[4]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[5]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[6]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[7]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[8]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[9]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[10]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[11]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[12]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

[13]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[14]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

[15]

Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144

[16]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[17]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[18]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[19]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[20]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (63)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]