July  2022, 27(7): 4007-4022. doi: 10.3934/dcdsb.2021216

Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production

School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian, 116025, China

* Corresponding author: Jianing Xie

Received  March 2021 Revised  July 2021 Published  July 2022 Early access  September 2021

Fund Project: The author is supported by National Science Foundation of China grant (No. 11572081), the Program Funded by Liaoning Province Education Administration (No. LN2021M37) and Dongbei University of Finance and Economics (No. DUFE2020Y20)

This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-growth system generalizing the prototype
$\begin{align} \left\{\begin{array}{ll} u_t = \Delta u-\nabla\cdot(u\nabla v)+\mu u(1-u),\quad x\in \Omega, t>0,\\ { }{ v_t = \Delta v- v +w},\quad x\in \Omega, t>0,\\ { }{\tau w_t+\delta w = u},\quad x\in \Omega, t>0\\ \end{array}\right. \end{align} (*)$
in a smoothly bounded domain
$ \Omega\subset\mathbb{R}^N(N\geq1) $
under zero-flux boundary conditions, which describe the spread and aggregative behavior of the Mountain Pine Beetle in forest habitat, where the parameters
$ \mu $
as well as
$ \delta $
and
$ \tau $
are positive. Based on an new energy-type argument combined with maximal Sobolev regularity theory, it is proved that global classical solutions exist whenever
$ \mu>\left\{ \begin{array}{ll} {0, \; \; \; {\rm{if}}\; \; N\leq4},\\ {\frac{(N-4)_{+}}{N-2}\max\{1,\lambda_{0}\},\; \; \; {\rm{if}}\; \; N\geq5}\\ \end{array} \right. $
and the initial data
$ (u_0,v_0,w_0) $
are sufficiently regular. Here
$ \lambda_0 $
is a positive constant which is corresponding to the maximal Sobolev regularity. This extends some recent results by several authors.
Citation: Jianing Xie. Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4007-4022. doi: 10.3934/dcdsb.2021216
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Diff. Eqns., 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[2]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.

[3]

V. Calvez and J. A. Carrillo, Volume effects in the Keller–Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.

[4]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[5]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 281-301.  doi: 10.1006/aama.2001.0721.

[6]

B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.

[8]

Y. Ke and J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Diff. Eqns., 58 (2019), 58-109.  doi: 10.1007/s00526-019-1568-2.

[9]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.

[10]

E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. RWA., 46 (2019), 421-445.  doi: 10.1016/j.nonrwa.2018.09.012.

[11]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.

[12]

H. Matthias and P. Jan, Heat kernels and maximal $L^p$-$L^q$ estimate for parabolic evolution equations, Comm. Partial Diff. Eqns., 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.

[13]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvac., 40 (1997), 411-433. 

[14]

S. StrohmR. C. Tyson and J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: Linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.  doi: 10.1007/s11538-013-9868-8.

[15]

Q. TangQ. Xin and C. Mu, Boundedness of the higher-dimensional quasilinear chemotaxis system with generalized logistic source, Acta Math Sci., 40 (2020), 713-722.  doi: 10.1007/s10473-020-0309-0.

[16]

Y. Tao and M. Winkler, A chemotaxis–haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[18]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.

[19]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[20]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.

[21]

L. WangY. Li and C. Mu, Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.

[22]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Diff. Eqns., 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.

[23]

Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Diff. Eqns., 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Diff. Eqns., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.

[27]

M. Winkler, Global asymptotic stability of constant equilibriain a fully parabolic chemotaxis system with strong logistic dampening, J. Diff. Eqns., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.

[28]

J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.

[29]

J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Diff. Eqns., 267 (2019), 2385-2415.  doi: 10.1016/j.jde.2019.03.013.

[30]

J. Zheng, Mathematical research for models which is related to chemotaxis system, current trends in mathematical analysis and its interdisciplinary applications, Birkhäuser, Cham, (2019), 351–444.

[31]

J. Zheng, A note on boundedness of solutions to a higher-dimensional quasi–linear chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 97 (2017), 414-421.  doi: 10.1002/zamm.201600166.

[32]

J. ZhengY. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Diff. Eqns., 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[2]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.

[3]

V. Calvez and J. A. Carrillo, Volume effects in the Keller–Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.

[4]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[5]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 281-301.  doi: 10.1006/aama.2001.0721.

[6]

B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.

[8]

Y. Ke and J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Diff. Eqns., 58 (2019), 58-109.  doi: 10.1007/s00526-019-1568-2.

[9]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.

[10]

E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. RWA., 46 (2019), 421-445.  doi: 10.1016/j.nonrwa.2018.09.012.

[11]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.

[12]

H. Matthias and P. Jan, Heat kernels and maximal $L^p$-$L^q$ estimate for parabolic evolution equations, Comm. Partial Diff. Eqns., 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.

[13]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvac., 40 (1997), 411-433. 

[14]

S. StrohmR. C. Tyson and J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: Linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.  doi: 10.1007/s11538-013-9868-8.

[15]

Q. TangQ. Xin and C. Mu, Boundedness of the higher-dimensional quasilinear chemotaxis system with generalized logistic source, Acta Math Sci., 40 (2020), 713-722.  doi: 10.1007/s10473-020-0309-0.

[16]

Y. Tao and M. Winkler, A chemotaxis–haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[18]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.

[19]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[20]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.

[21]

L. WangY. Li and C. Mu, Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.

[22]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Diff. Eqns., 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.

[23]

Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Diff. Eqns., 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Diff. Eqns., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.

[27]

M. Winkler, Global asymptotic stability of constant equilibriain a fully parabolic chemotaxis system with strong logistic dampening, J. Diff. Eqns., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.

[28]

J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.

[29]

J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Diff. Eqns., 267 (2019), 2385-2415.  doi: 10.1016/j.jde.2019.03.013.

[30]

J. Zheng, Mathematical research for models which is related to chemotaxis system, current trends in mathematical analysis and its interdisciplinary applications, Birkhäuser, Cham, (2019), 351–444.

[31]

J. Zheng, A note on boundedness of solutions to a higher-dimensional quasi–linear chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 97 (2017), 414-421.  doi: 10.1002/zamm.201600166.

[32]

J. ZhengY. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.

[1]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[2]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145

[3]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[4]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[5]

Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045

[6]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[7]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[8]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[9]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[10]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[11]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[12]

Guangyu Xu. Emergence of lager densities in chemotaxis system with indirect signal production and non-radial symmetry case. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022096

[13]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

[14]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[15]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[16]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[17]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[18]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[19]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic and Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[20]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (395)
  • HTML views (361)
  • Cited by (0)

Other articles
by authors

[Back to Top]