\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger (INLS) equation

    $ iu_{t} +\Delta u = |x|^{-b} f(u), \;u(0)\in H^{s} (\mathbb R^{n} ), $

    where $ n\in \mathbb N $, $ 0<s<\min \{ n, \; 1+n/2\} $, $ 0<b<\min \{ 2, \;n-s, \;1+\frac{n-2s}{2} \} $ and $ f(u) $ is a nonlinear function that behaves like $ \lambda |u|^{\sigma } u $ with $ \sigma>0 $ and $ \lambda \in \mathbb C $. Recently, the authors in [1] proved the local existence of solutions in $ H^{s}(\mathbb R^{n} ) $ with $ 0\le s<\min \{ n, \; 1+n/2\} $. However even though the solution is constructed by a fixed point technique, continuous dependence in the standard sense in $ H^{s}(\mathbb R^{n} ) $ with $ 0< s<\min \{ n, \; 1+n/2\} $ doesn't follow from the contraction mapping argument. In this paper, we show that the solution depends continuously on the initial data in the standard sense in $ H^{s}(\mathbb R^{n} ) $, i.e. in the sense that the local solution flow is continuous $ H^{s}(\mathbb R^{n} )\to H^{s}(\mathbb R^{n} ) $, if $ \sigma $ satisfies certain assumptions.

    Mathematics Subject Classification: 35Q55, 35B30, 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. An and J. Kim, Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in $H^{s} \left(\mathbb R^{n} \right)$, Nonlinear Anal. Real World Appl., 59 (2021), 103268. doi: 10.1016/j.nonrwa.2020.103268.
    [2] O. V. BorovkovaY. V. KartashovB. A. Malomed and L. Torner, Algebraic bright and vortex solitons in defocusing media, Opt. Lett., 36) (2011), 3088-3090.  doi: 10.1364/OL.36.003088.
    [3] O. V. BorovkovaY. V. KartashovV. A. VysloukhV. E. LobanovB. A. Malomed and L. Torner, Solitons supported by spatially inhomogeneous nonlinear losses, Opt. Express, 20 (2012), 2657-2667. 
    [4] L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 202 (2021), 112118. doi: 10.1016/j.na.2020.112118.
    [5] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.
    [6] T. CazenaveD. Fang and Z. Han, Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 135-147.  doi: 10.1016/j.anihpc.2010.11.005.
    [7] M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.
    [8] V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an $L^{2} $ critical inhomogeneous NLS, J. Evol. Equ., 16 (2016), 483-500.  doi: 10.1007/s00028-015-0309-z.
    [9] W. DaiW. Yang and D. Cao, Continuous dependence of Cauchy problem for nonlinear Schrödinger equation in $H^{s} $, J. Differential Equations, 255 (2013), 2018-2064.  doi: 10.1016/j.jde.2013.06.005.
    [10] V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 19 (2019), 411-434.  doi: 10.1007/s00028-019-00481-0.
    [11] V. D. Dinh, Blowup of $H^{1} $ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169-188.  doi: 10.1016/j.na.2018.04.024.
    [12] L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.  doi: 10.1007/s00028-015-0298-y.
    [13] L. G. Farah and C. M. Guzmán, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262 (2017), 4175-4231.  doi: 10.1016/j.jde.2017.01.013.
    [14] L. G. Farah and C. M. Guzmán, Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.), 51 (2020), 449-512.  doi: 10.1007/s00574-019-00160-1.
    [15] F. Genoud and C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.  doi: 10.3934/dcds.2008.21.137.
    [16] F. Genoud, An inhomogeneous, $L^{2} $-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.  doi: 10.4171/ZAA/1460.
    [17] T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana J. Phys., 55 (2000), 835-842.  doi: 10.1007/s12043-000-0051-z.
    [18] C. M. Guzmán, On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl., 37 (2017), 249-286.  doi: 10.1016/j.nonrwa.2017.02.018.
    [19] C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.
    [20] F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2$^{nd}$ edition, Universitext. Springer, New York, 2015. doi: 10.1007/978-1-4939-2181-2.
    [21] C. S. Liu and V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), 3100-3103.  doi: 10.1063/1.870501.
    [22] B. X. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. doi: 10.1142/9789814360746.
  • 加载中
SHARE

Article Metrics

HTML views(1130) PDF downloads(384) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return