-
Previous Article
Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance
- DCDS-B Home
- This Issue
-
Next Article
Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4
Global weak solutions to the generalized mCH equation via characteristics
1. | School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
3. | School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
In this paper, we study the generalized modified Camassa-Holm (gmCH) equation via characteristics. We first change the gmCH equation for unknowns $ (u,m) $ into its Lagrangian dynamics for characteristics $ X(\xi,t) $, where $ \xi\in\mathbb{R} $ is the Lagrangian label. When $ X_\xi(\xi,t)>0 $, we use the solutions to the Lagrangian dynamics to recover the classical solutions with $ m(\cdot,t)\in C_0^k(\mathbb{R}) $ ($ k\in\mathbb{N},\; \; k\geq1 $) to the gmCH equation. The classical solutions $ (u,m) $ to the gmCH equation will blow up if $ \inf_{\xi\in\mathbb{R}}X_\xi(\cdot,T_{\max}) = 0 $ for some $ T_{\max}>0 $. After the blow-up time $ T_{\max} $, we use a double mollification method to mollify the Lagrangian dynamics and construct global weak solutions (with $ m $ in space-time Radon measure space) to the gmCH equation by some space-time BV compactness arguments.
References:
[1] |
S. C. Anco and E. Recio, A general family of multi-peakon equations and their properties, J. Phys. A, 52 (2019), 125203.
doi: 10.1088/1751-8121/ab03dd. |
[2] |
A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford University Press on Demand, 2000. |
[3] |
A. S. Fokas,
The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39 (1995), 295-305.
doi: 10.1007/BF00994638. |
[4] |
B. Fuchssteiner,
Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Phys. D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[5] |
Y. Gao and H. Liu,
Global $N$-peakon weak solutions to a family of nonlinear equations, J. Differential Equations, 271 (2021), 343-355.
doi: 10.1016/j.jde.2020.08.042. |
[6] |
Y. Gao and J.-G. Liu,
The modified Camassa-Holm equation in Lagarange coordinates, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2545-2592.
doi: 10.3934/dcdsb.2018067. |
[7] |
Z. Guo, X. Liu, X. Liu and C. Qu,
Stability of peakons for the generalized modified Camassa-Holm equation, J. Differential Equations, 266 (2019), 7749-7779.
doi: 10.1016/j.jde.2018.12.014. |
[8] |
X. Liu,
Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete Contin. Dyn. Syst., 38 (2018), 5505-5521.
doi: 10.3934/dcds.2018242. |
[9] |
X. Liu, Stability in the energy space of the sum of N peakons for a modified Camassa-Holm equation with higher-order nonlinearity, J. Math. Phys., 59 (2018), 121505.
doi: 10.1063/1.5034143. |
[10] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
![]() ![]() |
[11] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[12] |
Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701.
doi: 10.1063/1.2365758. |
[13] |
M. Yang, Y. Li and Y. Zhao,
On the Cauchy problem of generalized Fokas-Olver-Resenau-Qiao equation, Appl. Anal., 97 (2018), 2246-2268.
doi: 10.1080/00036811.2017.1359565. |
[14] |
S. Yang, Blow-up phenomena for the generalized FORQ/MCH equation, Z. Angew. Math. Phys., 71 (2020), Paper No. 20, 13 pp.
doi: 10.1007/s00033-019-1241-9. |
show all references
References:
[1] |
S. C. Anco and E. Recio, A general family of multi-peakon equations and their properties, J. Phys. A, 52 (2019), 125203.
doi: 10.1088/1751-8121/ab03dd. |
[2] |
A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford University Press on Demand, 2000. |
[3] |
A. S. Fokas,
The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39 (1995), 295-305.
doi: 10.1007/BF00994638. |
[4] |
B. Fuchssteiner,
Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Phys. D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[5] |
Y. Gao and H. Liu,
Global $N$-peakon weak solutions to a family of nonlinear equations, J. Differential Equations, 271 (2021), 343-355.
doi: 10.1016/j.jde.2020.08.042. |
[6] |
Y. Gao and J.-G. Liu,
The modified Camassa-Holm equation in Lagarange coordinates, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2545-2592.
doi: 10.3934/dcdsb.2018067. |
[7] |
Z. Guo, X. Liu, X. Liu and C. Qu,
Stability of peakons for the generalized modified Camassa-Holm equation, J. Differential Equations, 266 (2019), 7749-7779.
doi: 10.1016/j.jde.2018.12.014. |
[8] |
X. Liu,
Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete Contin. Dyn. Syst., 38 (2018), 5505-5521.
doi: 10.3934/dcds.2018242. |
[9] |
X. Liu, Stability in the energy space of the sum of N peakons for a modified Camassa-Holm equation with higher-order nonlinearity, J. Math. Phys., 59 (2018), 121505.
doi: 10.1063/1.5034143. |
[10] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
![]() ![]() |
[11] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[12] |
Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701.
doi: 10.1063/1.2365758. |
[13] |
M. Yang, Y. Li and Y. Zhao,
On the Cauchy problem of generalized Fokas-Olver-Resenau-Qiao equation, Appl. Anal., 97 (2018), 2246-2268.
doi: 10.1080/00036811.2017.1359565. |
[14] |
S. Yang, Blow-up phenomena for the generalized FORQ/MCH equation, Z. Angew. Math. Phys., 71 (2020), Paper No. 20, 13 pp.
doi: 10.1007/s00033-019-1241-9. |
[1] |
Kapil Kumar Choudhary, Rajiv Kumar, Rajesh Kumar. Global classical and weak solutions of the prion proliferation model in the presence of chaperone in a banach space. Evolution Equations and Control Theory, 2022, 11 (4) : 1175-1190. doi: 10.3934/eect.2021039 |
[2] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[3] |
Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647 |
[4] |
Fucai Li, Yue Li. Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3583-3604. doi: 10.3934/cpaa.2021122 |
[5] |
Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072 |
[6] |
Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681 |
[7] |
Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883 |
[8] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[9] |
Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334 |
[10] |
Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure and Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031 |
[11] |
James M. Scott, Tadele Mengesha. Self-Improving inequalities for bounded weak solutions to nonlocal double phase equations. Communications on Pure and Applied Analysis, 2022, 21 (1) : 183-212. doi: 10.3934/cpaa.2021174 |
[12] |
Monica Marras, Nicola Pintus, Giuseppe Viglialoro. On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2033-2045. doi: 10.3934/dcdss.2020156 |
[13] |
Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867 |
[14] |
Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212 |
[15] |
Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026 |
[16] |
Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643 |
[17] |
Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52. |
[18] |
Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575 |
[19] |
Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113 |
[20] |
Chien-Hong Cho, Marcus Wunsch. Global weak solutions to the generalized Proudman-Johnson equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1387-1396. doi: 10.3934/cpaa.2012.11.1387 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]