We study behavioral change - as a transition between coexisting attractors - in the context of a stochastic, non-linear consumption model with interdependent agents. Relying on the indirect approach to the analysis of a stochastic dynamic system, and employing a mix of analytical, numerical and graphical techniques, we identify conditions under which such transitions are likely to occur. The stochastic analysis depends crucially on the stochastic sensitivity function technique as it can be applied to the stochastic analoga of closed invariant curves [
Citation: |
Figure 2.
Bifurcation diagram for
Figure 3.
For
Figure 7.
The top panel shows the graph of the sensitivity function for
Figure 10.
For
[1] |
I. Bashkirtseva and L. Ryashko, Stochastic sensitivity of the closed invariant curves for discrete-time systems, Phys. A, 410 (2014), 236-243.
doi: 10.1016/j.physa.2014.05.037.![]() ![]() ![]() |
[2] |
I. Bashkirtseva, L. Ryashko and A. Sysolyatina, Analysis of stochastic effects in Kaldor-type business cycle discrete model, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 446-456.
doi: 10.1016/j.cnsns.2015.12.020.![]() ![]() ![]() |
[3] |
J. Benhabib and R. H. Day, Rational choice and erratic behaviour, Rev. Econom. Stud., 48 (1981), 459-471.
doi: 10.2307/2297158.![]() ![]() ![]() |
[4] |
H. W. Broer, M. Golubitsky and G. Vegter, Geometry of resonance tongues, Singularity Theory, 327–356, World Sci. Publ., Hackensack, NJ, (2007). https://www.researchgate.net/publication/252963138_Geometry_of_resonance_tongues
doi: 10.1142/9789812707499_0012.![]() ![]() ![]() |
[5] |
E. Ekaterinchuk, J. Jungeilges, T. Ryazanova and I. Sushko, Dynamics of a minimal consumer network with bi-directional influence, Commun. Nonlinear Sci. Numer. Simul., 58 (2018), 107-118.
doi: 10.1016/j.cnsns.2017.04.007.![]() ![]() ![]() |
[6] |
E. Ekaterinchuk, J. Jungeilges, T. Ryazanova and I. Sushko, Dynamics of a minimal consumer network with uni-directional influence, Journal of Evolutionary Economics, 27 (2017), 831-857.
doi: 10.1007/s00191-017-0517-5.![]() ![]() |
[7] |
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 3rd edition, Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-25847-3.![]() ![]() ![]() |
[8] |
W. Gaertner and J. Jungeilges, A non-linear model of interdependent consumer behaviour, Economics Letters, 27 (1988), 145-150.
doi: 10.1016/0165-1765(88)90087-0.![]() ![]() ![]() |
[9] |
W. Gaertner and J. Jungeilges, "Spindles" and coexisting attractors in a dynamic model of interdependent consumer behavior: A note, Journal of Economic Behavior & Organization, 21 (1993), 223-231.
doi: 10.1016/0167-2681(93)90049-U.![]() ![]() |
[10] |
J. Jungeilges, E. Maklakova and T. Perevalova, Stochastic sensitivity of bull and bear states, Journal of Economic Interaction and Cooperation, (2021).
doi: 10.1007/s11403-020-00313-2.![]() ![]() |
[11] |
J. Jungeilges and T. Ryazanova, Transitions in consumption behaviors in a peer-driven stochastic consumer network, Chaos Solitons Fractals, 128 (2019), 144-154.
doi: 10.1016/j.chaos.2019.07.042.![]() ![]() ![]() |
[12] |
J. Jungeilges, T. Ryazanova, A. Mitrofanova and I. Popova, Sensitivity analysis of consumption cycles, Chaos, 28 (2018), 055905, 12 pp.
doi: 10.1063/1.5024033.![]() ![]() ![]() |
[13] |
Z. Li, K. Guo, J. Jiang and L. Hong, Study on critical conditions and transient behavior in noise-induced bifurcations, Control of Self-Organizing Nonlinear Systems, 169–187, Underst. Complex Syst., Springer, [Cham], (2016).
doi: 10.1007/978-3-319-28028-8_9.![]() ![]() ![]() |
[14] |
G. Mil'shtein and L. Ryashko, The first approximation in the quasipotential problem of stability of non-degenerate systems with random perturbations, Journal of Applied Mathematics and Mechanics, 59 (1995), 47-56.
![]() |
[15] |
A. Panchuk, CompDTIMe: Computing one-dimensional invariant manifolds for saddle points of discrete time dynamical systems, Gecomplexity Discussion Paper Series 11, Action IS1104 "The EU in the new complex geography of economic systems: Models, tools and policy evaluation", 2015, https://EconPapers.repec.org/RePEc:cst:wpaper:11.
![]() |
[16] |
L. Ryashko, Noise-induced transformations in corporate dynamics of coupled chaotic oscillators, Mathematical Methods in the Applied Sciences.
doi: 10.1002/mma.6578.![]() ![]() |
[17] |
A. N. Silchenko, S. Beri, D. G. Luchinsky and P. V. E. McClintock, Fluctuational transitions through a fractal basin boundary, Phys. Rev. Lett., 91 (2003), 174104.
doi: 10.1103/PhysRevLett.91.174104.![]() ![]() |
[18] |
E. Slepukhina, L. Ryashko and P. Kügler, Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model, Chaos, Solitons & Fractals, 131 (2020), 109515.
doi: 10.1016/j.chaos.2019.109515.![]() ![]() |
[19] |
Y. Tadokoro, H. Tanaka and M. I. Dykman, Noise-induced switching from a symmetry-protected shallow metastable state, Scientific Reports, 10 (2020), 1-10.
![]() |
[20] |
J. Xu, T. Zhang and K. Song, A stochastic model of bacterial infection associated with neutrophils, Appl. Math. Comput., 373 (2020), 125025, 12 pp.
doi: 10.1016/j.amc.2019.125025.![]() ![]() ![]() |
[21] |
Z. T. Zhusubaliyev, E. Soukhoterin and E. Mosekilde, Quasiperiodicity and torus breakdown in a power electronic dc/dc converter, Math. Comput. Simulation, 73 (2007), 364-377.
doi: 10.1016/j.matcom.2006.06.021.![]() ![]() ![]() |