\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Transitions between metastable long-run consumption behaviors in a stochastic peer-driven consumer network

  • * Corresponding author: Jochen Jungeilges

    * Corresponding author: Jochen Jungeilges 

The authors want to thank two anonymous referees for there work.

Abstract Full Text(HTML) Figure(11) Related Papers Cited by
  • We study behavioral change - as a transition between coexisting attractors - in the context of a stochastic, non-linear consumption model with interdependent agents. Relying on the indirect approach to the analysis of a stochastic dynamic system, and employing a mix of analytical, numerical and graphical techniques, we identify conditions under which such transitions are likely to occur. The stochastic analysis depends crucially on the stochastic sensitivity function technique as it can be applied to the stochastic analoga of closed invariant curves [14], [1]. We find that in a moderate noise environment increased peer influence actually reduces the complexity of observable long-run consumer behavior.

    Mathematics Subject Classification: Primary: 37G35, 37H20; Secondary: 37N40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Bird's eye view of the parameter plane $ D $, where remaining parameters have been fixed at $ (p_x, p_y) = \left(\frac{1}{4}, 1\right), \ $$ (b_1, b_2) = (10,20), \ \alpha_1 = 0.0002, \ \alpha_2 = 0.00052$

    Figure 2.  Bifurcation diagram for $ D^N $ with $ (p_x, p_y) = \left(\frac{1}{4}, 1\right), \ (b_1, b_2) = (10,20), \ \alpha_1 = 0.0002, \ \alpha_2 = 0.00052 $. $ NS $ indicates the Neimark-Sacker bifurcation curve related to the fixed point. $ SN_3 $ curve gives the loci at which a saddle 3-cycle is born together with the attracting 3-cycle ($ C_3 $) via a saddle-node bifurcation. $ NS_3 $ designates the Neimark-Sacker bifurcation curve of the 3-cycle. The horizontal line through $ D_{21} = 0.0075 $ indicates the interval of parameter values for which our study of transitions between coexisting attractors focuses on. The $ NS $ and $ NS_3 $ curves are crossed twice at $ \star $ (red star) and $ \star $ (green star). Also the saddle node bifurcation curve $ SN_3 $ is intersected twice. The intersection points are indicated by $ \bullet $ (blue circles). Related details are revealed in Figure 3

    Figure 3.  For $ D_{21} = 0.0075 $, we give bifurcation diagrams for $ 0 \leq D_{12} \leq 0.00245 $ linked to the horizontal black line in Figure 2(a) and an enlargement (b) focussing on the interval $ 0.00145 \leq D_{12} \leq 0.001975 $ over which two attractors coexists

    Figure 4.  Bifurcation diagram for the case of additive noise with $ \varepsilon = 0.1 $ ($ D_{21} = 0.0075 $). If the initial value $ (x_{1,0},x_{2,0}) $ lies on the deterministic blue (red) attractor, then elements of the trajectory are colored light blue (red)

    Figure 5.  Bifurcation diagram for the case of parametric noise with $ \varepsilon = 0.1 $ ($ D_{21} = 0.0075 $). If $ (x_{1,0},x_{2,0}) $ lies on the deterministic blue (red) attractor, then elements of the trajectory are colored light blue (red)

    Figure 6.  Confidence sets for fixed point $ E $ ($ \bullet $) and 3-cycle $ C_3 $ ($ \bullet $) at $ D_{12} = 0.00195 $, $ D_{21} = 0.0075 $ with trajectories superimposed ($ \varepsilon = 0.1 $ (white), $ \varepsilon = 0.05 $ (grey))

    Figure 7.  The top panel shows the graph of the sensitivity function for $ \Gamma $, i.e. a plot of the maximum eigenvalue ($ \lambda $) of the sensitivity matrix at a point on $ \Gamma $ versus the angle $ \phi $ identifying the point on the attractor. The subfigures on the bottom give the confidence sets $ \mathcal{C}(\Gamma, \varepsilon = 0.1) $ at $ D_{12} = 0.00157 $ for additive (a) and parametric noise (b)

    Figure 8.  The figure shows the attractor $ \Gamma_3 $ at $ D_{12} = 0.0017 $ (a), the sensitivity functions for $ \Gamma_3 $ (b) as well as the related confidence sets $ \mathcal{C}(\Gamma_3, \varepsilon = 0.1) $ for additive (c) and parametric noise (d)

    Figure 9.  1D bifurcation diagrams ((a),(b)) and critical intensities for coexisting attractors (c) with additive (solid lines) and parametric (dashed lines) noise for $ D_{12} \in D^{ms} $

    Figure 10.  For $ (D_{12}, D_{21}) = (0.001706,0.0075) $ we show the state space representation of the coexisting attractors $ \Gamma_3 $ (dark red curves) and $ \Gamma $ (blue curve) together with their immediate basins $ \mathcal{B}(\Gamma_3) $ (light red) and $ \mathcal{B}(\Gamma) $ (light blue). The confidence sets are superimposed ($ \varepsilon \in \{ 0.1, 0.2, 0.3\} $). Periodic points (red triangles) of the 3-saddle cycle are exhibited together with its stable (black lines) and unstable (red lines) manifolds. In addition, the unstable fixed point $ E $ (blue circle) and the unstable 3-cylce (periodic point given by red circles) are given

    Figure 11.  ( $ \Gamma $, $ \Gamma_3 $) at $ (D_{12}, D_{21}) = (0.001706,0.0075) $ with sample trajectory (single simulation run with $ \varepsilon = 0.2 $) superimposed

  • [1] I. Bashkirtseva and L. Ryashko, Stochastic sensitivity of the closed invariant curves for discrete-time systems, Phys. A, 410 (2014), 236-243.  doi: 10.1016/j.physa.2014.05.037.
    [2] I. BashkirtsevaL. Ryashko and A. Sysolyatina, Analysis of stochastic effects in Kaldor-type business cycle discrete model, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 446-456.  doi: 10.1016/j.cnsns.2015.12.020.
    [3] J. Benhabib and R. H. Day, Rational choice and erratic behaviour, Rev. Econom. Stud., 48 (1981), 459-471.  doi: 10.2307/2297158.
    [4] H. W. Broer, M. Golubitsky and G. Vegter, Geometry of resonance tongues, Singularity Theory, 327–356, World Sci. Publ., Hackensack, NJ, (2007). https://www.researchgate.net/publication/252963138_Geometry_of_resonance_tongues doi: 10.1142/9789812707499_0012.
    [5] E. EkaterinchukJ. JungeilgesT. Ryazanova and I. Sushko, Dynamics of a minimal consumer network with bi-directional influence, Commun. Nonlinear Sci. Numer. Simul., 58 (2018), 107-118.  doi: 10.1016/j.cnsns.2017.04.007.
    [6] E. EkaterinchukJ. JungeilgesT. Ryazanova and I. Sushko, Dynamics of a minimal consumer network with uni-directional influence, Journal of Evolutionary Economics, 27 (2017), 831-857.  doi: 10.1007/s00191-017-0517-5.
    [7] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 3rd edition, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3.
    [8] W. Gaertner and J. Jungeilges, A non-linear model of interdependent consumer behaviour, Economics Letters, 27 (1988), 145-150.  doi: 10.1016/0165-1765(88)90087-0.
    [9] W. Gaertner and J. Jungeilges, "Spindles" and coexisting attractors in a dynamic model of interdependent consumer behavior: A note, Journal of Economic Behavior & Organization, 21 (1993), 223-231.  doi: 10.1016/0167-2681(93)90049-U.
    [10] J. Jungeilges, E. Maklakova and T. Perevalova, Stochastic sensitivity of bull and bear states, Journal of Economic Interaction and Cooperation, (2021). doi: 10.1007/s11403-020-00313-2.
    [11] J. Jungeilges and T. Ryazanova, Transitions in consumption behaviors in a peer-driven stochastic consumer network, Chaos Solitons Fractals, 128 (2019), 144-154.  doi: 10.1016/j.chaos.2019.07.042.
    [12] J. Jungeilges, T. Ryazanova, A. Mitrofanova and I. Popova, Sensitivity analysis of consumption cycles, Chaos, 28 (2018), 055905, 12 pp. doi: 10.1063/1.5024033.
    [13] Z. Li, K. Guo, J. Jiang and L. Hong, Study on critical conditions and transient behavior in noise-induced bifurcations, Control of Self-Organizing Nonlinear Systems, 169–187, Underst. Complex Syst., Springer, [Cham], (2016). doi: 10.1007/978-3-319-28028-8_9.
    [14] G. Mil'shtein and L. Ryashko, The first approximation in the quasipotential problem of stability of non-degenerate systems with random perturbations, Journal of Applied Mathematics and Mechanics, 59 (1995), 47-56. 
    [15] A. Panchuk, CompDTIMe: Computing one-dimensional invariant manifolds for saddle points of discrete time dynamical systems, Gecomplexity Discussion Paper Series 11, Action IS1104 "The EU in the new complex geography of economic systems: Models, tools and policy evaluation", 2015, https://EconPapers.repec.org/RePEc:cst:wpaper:11.
    [16] L. Ryashko, Noise-induced transformations in corporate dynamics of coupled chaotic oscillators, Mathematical Methods in the Applied Sciences. doi: 10.1002/mma.6578.
    [17] A. N. SilchenkoS. BeriD. G. Luchinsky and P. V. E. McClintock, Fluctuational transitions through a fractal basin boundary, Phys. Rev. Lett., 91 (2003), 174104.  doi: 10.1103/PhysRevLett.91.174104.
    [18] E. Slepukhina, L. Ryashko and P. Kügler, Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model, Chaos, Solitons & Fractals, 131 (2020), 109515. doi: 10.1016/j.chaos.2019.109515.
    [19] Y. TadokoroH. Tanaka and M. I. Dykman, Noise-induced switching from a symmetry-protected shallow metastable state, Scientific Reports, 10 (2020), 1-10. 
    [20] J. Xu, T. Zhang and K. Song, A stochastic model of bacterial infection associated with neutrophils, Appl. Math. Comput., 373 (2020), 125025, 12 pp. doi: 10.1016/j.amc.2019.125025.
    [21] Z. T. ZhusubaliyevE. Soukhoterin and E. Mosekilde, Quasiperiodicity and torus breakdown in a power electronic dc/dc converter, Math. Comput. Simulation, 73 (2007), 364-377.  doi: 10.1016/j.matcom.2006.06.021.
  • 加载中

Figures(11)

SHARE

Article Metrics

HTML views(284) PDF downloads(127) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return