[1]
|
F. B. Agusto, S. Bewick and W. F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017), 244-267.
doi: 10.1016/j.idm.2017.05.003.
|
[2]
|
A. C. Bartlett and R. T. Staten, Sterile Insect Release Method and Other Genetic Control Strategies, Radcliffe's IPM World Textbook, 1996.
|
[3]
|
G. Benelli, C. L. Jeffries and T. Walker, Biological control of mosquito vectors: Past, present, and future, Insects, 7 (2016), 52.
doi: 10.3390/insects7040052.
|
[4]
|
E. Bonyah, M. A. Khan, K. O. Okosun, et al., A theoretical model for Zika virus transmission, PLoS ONE, 12 (2017), 1-18.
doi: 10.1371/journal.pone.0185540.
|
[5]
|
G. Bowatte, P. Perera, G. Senevirathne, et al. Tadpoles as dengue mosquito (Aedes aegypti) egg predators, Biological Control, 67 (2013), 469-474.
doi: 10.1016/j.biocontrol.2013.10.005.
|
[6]
|
V.-M. Cao-Lormeau, A. Blake, S. Mons, S. Lastére, C. Roche and J. Vanhomwegen, Guillain-barré syndrome out–break associated with Zika virus infection in French Polynesia: A case-control study, The Lancet., 387 (2016), 1531-1539.
doi: 10.1016/S0140-6736(16)00562-6.
|
[7]
|
V.-M. Cao-Lormeau, C. Roche, A. Teissier, E. Robin, A.-L. Berry, H.-P. Mallet, et al., Zika virus, French Polynesia, South Pacific, Emerg Infect Dis., 20 (2014), 1084–1086.
doi: 10.3201/eid2006.140138.
|
[8]
|
C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity. Volume One, (1994), 33–50. Theory of epidemics.
|
[9]
|
R. S. de Sousa, L. G. C. de Menezes, J. F. Felizzola, R. de Oliveira Figueiredo, T. D. de Abreu Sá, et al., Water and health in igarapé-aścu, pará, brazil, Saúde Soc. São Paulo, 25 (2016), 1095–1107. https://core.ac.uk/download/pdf/296788278.pdf
|
[10]
|
C. Ding, N. Tao and Y. Zhu, A Mathematical Model of Zika Virus and its Optimal Control, Chinese Control Conference, IEEE, 2016.
|
[11]
|
S. Escutenaire, P. Chalon, R. Verhagen, et al., Spatial and temporal dynamics of Puumala hantavirus infection in red bank vole (Clethrionomys glareolus) populations in Belgium, Virus Research, 67 (2000), 91-107.
doi: 10.1016/S0168-1702(00)00136-2.
|
[12]
|
N. M. Ferguson, Z. M. Cucunubá, I. Dorigatti, G. L. Nedjati-Gilani, C. A. Donnelly, M-G. Basáñez, P. Nouvellet and J. Lessler, Countering the Zika epidemic in Latin America, Science (New York, N.Y.), 353 (2016), 353-354.
doi: 10.1126/science.aag0219.
|
[13]
|
S. Funk, A. J. Kucharski, A. Camacho, R. M. Eggo, L. Yakob, L. M. Murray and W. J. Edmunds, Comparative analysis of dengue and Zika outbreak sreveals differences by setting and virus, PLOS Neglected Tropical Diseases, 10 (2016), e0005173.
doi: 10.1371/journal.pntd.0005173.
|
[14]
|
Z. L. Gabriel, I. K. L. P. Paulo, A. K. Roberto, et al., Biodiversity can help prevent malaria outbreaks in tropical forests, PLoS Neglected Tropical Diseases, 7 (2013), e2139.
doi: 10.1371/journal.pntd.0002139.
|
[15]
|
D. Gao, Y. Lou, D. He, et al., Prevention and control of Zika fever as a mosquito-borne and sexually transmitted disease, Scientific Reports, 6 (2016), 28070.
|
[16]
|
L. L. Giatti, A. A. Rocha, F. A. dos Santos, S. C. Bitencourt and E S. Rodrigues de Melo Pieroni, Basic sanitary conditions in Iporanga, São Paulo State, Brazil, Rev Saude Publica, 38 (2004), 1–6. https://www.scielo.br/pdf/rsp/v38n4/en_21088.pdf
|
[17]
|
J. Huang, S. Ruan, P. Yu, et al., Bifurcation analysis of a mosquito population model with a saturated release rate of sterile mosquitoes, SIAM J. Appl. Dyn. Syst., 18 (2019), 939-972.
doi: 10.1137/18M1208435.
|
[18]
|
F. Keesing, R. D. Holt and R. S. Ostfeld, Effects of species diversity on disease risk, Ecology Letters, 9 (2006), 485-498.
doi: 10.1111/j.1461-0248.2006.00885.x.
|
[19]
|
A. J. Kucharski, S. Funk, R. M. Eggo, H.-P. Mallet, W. J. Edmunds and E. J.Nilles, Transmission dynamics of Zika virus in island populations: A modelling analysis of the 2013-2014 French polynesia outbreak, PLOS Neglected Tropical Diseases, 10 (2016), e0004726.
doi: 10.1371/journal.pntd.0004726.
|
[20]
|
D. F. A. L, G. González-Parra and T. Benincasa, Mathematical'modeling and numerical simulations of Zika in Colombia considering mutation, Math. Comput. Simulation, 163 (2019), 1–18.
doi: 10.1016/j.matcom.2019.02.009.
|
[21]
|
Lioyd Wen Feng Lee and Mohd Hafiz Mohd, The biodiversity effect in regulating the prevalence of Sin Nombre virus (SNV), Malaysian Journal of Fundamental and Applied Sciences, 16 (2020), 271-276.
|
[22]
|
J. Li, L. Cai and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, Journal of Biological Dynamics, (2016), 79–101.
doi: 10.1080/17513758.2016.1159740.
|
[23]
|
A. D. Luis, A. J. Kuenzi and J. N. Mills, Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms, Proceedings of the National Academy of Sciences, 115 (2018), 7979-7984.
doi: 10.1073/pnas.1807106115.
|
[24]
|
Z. Ma and Y. Zhou, Qualitative and Stability Methods for Ordinary Differential Equations, Science Press, Beijing China, 2001.
|
[25]
|
C. A. Manore, K. S. Hickmann, S. Xu, et al., Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theoret. Biol., 356 (2014), 174-191.
doi: 10.1016/j.jtbi.2014.04.033.
|
[26]
|
T. Y. Miyaoka, S. Lenhart and J. F. C. A. Meyer, Optimal control of vaccination in a vector–borne reaction–diffusion model applied to Zika virus, J. Math. Biol., 79 (2019), 1077-1104.
doi: 10.1007/s00285-019-01390-z.
|
[27]
|
United Nations, Convention on Biological Diversity; 1992., Available from: https://www.cbd.int/convention/text/default.shtml. Accessed July 27, 2014.
|
[28]
|
A. S. Oliveira Melo, G. Malinger, R. Ximenes, P. O. Szejnfeld, S. Alves Sampaio and A. M. Bispo de Filippis, Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: Tip of the iceberg?, Ultrasound in Obstetrics & Gynecology, 47 (2016), 6-7.
doi: 10.1002/uog.15831.
|
[29]
|
R. R. Patil, Ch. Satish Kumar and M. Bagvandas, Biodiversity loss: Public health risk of disease spread and epidemics, Annals of Tropical Medicine and Public Health, 23 (2017), 1432-1438.
|
[30]
|
I. D. Peixoto and G. Abramson, The effect of biodversity on the Hantavirus epizootic, The Ecological Society of America, 87 (2006), 873-879.
|
[31]
|
P. Suparit, A. Wiratsudakul and C. Modchang, A mathematical model for Zika virus transmission dynamics with a time dependent mosquito biting rate, Theoretical Biology and Medical Modelling 2018, 15 (2018), Article number: 11.
doi: 10.1186/s12976-018-0083-z.
|
[32]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibrium for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[33]
|
Z. Wen, H. Song and G.-L. Ming, How does Zika virus cause microcephaly?, Genns & Development, 31 (2017), 849-861.
doi: 10.1101/gad.298216.117.
|
[34]
|
WHO declared the Zika epidemic an "International Public Health Emergency".
|
[35]
|
World Health Organization, Neurological Syndrome, Congenital Malformations, and Zika Virus Infection, implications for public health in the Americas. Epidemiological Alert. 2015. http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&Itemid=270&gid=32405&lang=en
|
[36]
|
H. Yin, C. Yang, X. Zhang and J. Li, Dynamics of malaria transmission model with sterile mosquitoes, J. Biol. Dyn., 12 (2018), 577-595.
doi: 10.1080/17513758.2018.1498983.
|
[37]
|
F. M. Yusof, F. A. Abdullah and A. I. M. Ismail, Modeling and optimal control on the spread of Hantavirus infection, Mathematics., 7 (2019), 1-11.
doi: 10.3390/math7121192.
|
[38]
|
F. M. Yusof, A. Azmi, M. H. Mohd and A. I. M. Ismail, Effect of biodiversity on the spread of leptospirosis infection, In Proceedings of the International Conference on Mathematical Sciences and Technology 2018 (MathTech 2018), The Hotel Equatorial Penang, Malaysia, (2018), 10–12.
|
[39]
|
Zika virus introduced by WHO, https://www.who.int/mediacentre/factsheets/Zika/en/.
|