[1]
|
P. Aavania and L. J. S. Allen, The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection, Appl. Math. Model., 75 (2019), 210-222.
doi: 10.1016/j.apm.2019.05.028.
|
[2]
|
K. B. Blyuss and L. B. Nicholson, The role of tunable activation thresholds in the dynamics of autoimmunity, J. Theor. Biol., 308 (2012), 45-55.
doi: 10.1016/j.jtbi.2012.05.019.
|
[3]
|
K. B. Blyuss and L. B. Nicholson, Understanding the roles of activation threshold and infections in the dynamics of autoimmune disease, J. Theor. Biol., 375 (2015), 13-20.
|
[4]
|
C. Bunce and E. B. Bell, CD45RC isoforms define two types of CD4 memory T cells, one of which depends on persisting antigen, J. Exp. Med., 185 (1997), 767-776.
doi: 10.1084/jem.185.4.767.
|
[5]
|
E. B. Bell, S. M. Sparshott and C. Bunce, CD4+ T-cell memory, CD45R subsets and the persistence of antigen-a unifying concept, Trends in Immunology, 19 (1998), 60-64.
doi: 10.1016/S0167-5699(97)01211-5.
|
[6]
|
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Aced. Sci., 94 (1997), 6971-6976.
doi: 10.1073/pnas.94.13.6971.
|
[7]
|
M. Bukrinsky, T. Stanwick, M. Dempsey and M. Stevenson, Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection, Science, 254 (1991), 423-427.
doi: 10.1126/science.1925601.
|
[8]
|
D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29-64.
doi: 10.1006/bulm.2001.0266.
|
[9]
|
A. H. Courtney, W. L. Lo and A. Weiss, Tcr signaling: Mechanisms of initiation and propagation, Trends Biochem. Sci., 43 (2018), 108-123.
doi: 10.1016/j.tibs.2017.11.008.
|
[10]
|
S. Cemerski and A. Shaw, Immune synapses in T-cell activation, Curr. Opin. Immunol., 18 (2006), 298-304.
doi: 10.1016/j.coi.2006.03.011.
|
[11]
|
D. A. Cantrell and K. A. Smith, Transient expression of interleukin 2 receptors, Consequences for T cell growth, J. Exp. Med., 158 (1983), 1895-1911.
doi: 10.1084/jem.158.6.1895.
|
[12]
|
D. Cantrell, T cell antigen receptor signal transduction pathways, Annu. Rev. Immunol., 14 (1996), 259-274.
doi: 10.1146/annurev.immunol.14.1.259.
|
[13]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[14]
|
C. Ding, Z. Qiu and H. Zhu, Multi-host transmission dynamics of schistosomiasis and its optimal control, Math. Biosci. Eng., 12 (2015), 983-1006.
doi: 10.3934/mbe.2015.12.983.
|
[15]
|
R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison, J. Theor. Biol., 190 (1998), 201-214.
|
[16]
|
C. Doyle and J. L. Strominger, Interaction between CD4 and class Ⅱ MHC molecules mediates cell adhesion, Nature, 330 (1987), 256-259.
doi: 10.1038/330256a0.
|
[17]
|
Q. Deng, Z. Qiu, T. Guo and L. Rong, Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance, Discrete Contin. Dyn. Syst. B, 26 (2021), 3543-3562.
doi: 10.3934/dcdsb.2020245.
|
[18]
|
R. J. De Boer, P. Hogeweg, H. F. Dullens, R. A. De Weger and W. Den Otter, Macrophage T lymphocyte interactions in the anti-tumor immune response: A mathematical model, J. Immunol., 134 (1985), 2748-2758.
|
[19]
|
R. J. De Boer, D. Homann and A. S. Perelson, Different dynamics of CD4++ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection, J. Immunol., 171 (2003), 3928-3935.
|
[20]
|
A. Fauci, Multifactorial nature of human immunodeficiency virus disease: Implications for therapy, Science, 262 (1993), 1011-1018.
doi: 10.1126/science.8235617.
|
[21]
|
F. Fatehi Chenar, Y. N. Kyrychko and K. B. Blyuss, Mathematical model of immune response to hepatitis B, J. Theor. Biol., 447 (2018), 98-110.
doi: 10.1016/j.jtbi.2018.03.025.
|
[22]
|
T. Guo, Z. Qiu and L. Rong, Modeling the role of macrophages in HIV persistence during antiretroviral therapy, J. Math. Bio., 81 (2020), 369-402.
doi: 10.1007/s00285-020-01513-x.
|
[23]
|
S. D. Gowda, B. S. Stein, N. Mohagheghpour, C. J. Benike and E. G. Engleman, Evidence that T cell activation is required for HIV-1 entry in CD4+ lymphocytes, J. Immunol., 142 (1989), 773-780.
|
[24]
|
A. Hashimoto-Tane and T. Saito, Dynamic regulation of TCR-microclusters and the microsynapse for T cell activation, Front. Immunol., 7 (2016).
doi: 10.3389/fimmu.2016.00255.
|
[25]
|
D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373 (1995), 123-126.
doi: 10.1038/373123a0.
|
[26]
|
A. L. Hill, D. I. S. Rosenbloom, M. A. Nowak and R. F. Siliciano, Insight into treatment of HIV infection from viral dynamics models, Immunol. Rev., 285 (2018), 9-25.
doi: 10.1111/imr.12698.
|
[27]
|
C. Janeway, P. Travers, M. Walport and M. Schlomchik, Immunobiology: The Immune System in Health and Disease, Garland Science Publishing, New York, 2005.
|
[28]
|
P. S. Kim and P. P. Lee, T cell state transition produces an emergent change detector, J. Theor. Biol., 275 (2011), 59-69.
doi: 10.1016/j.jtbi.2011.01.031.
|
[29]
|
A. Lanzavecchia, G. Iezzi and A. Viola, From TCR engagement to T cell activation: A kinetic view of T cell behavior, Cell, 96 (1999), 1-4.
|
[30]
|
L. Lu, K. Ikizawa, D. Hu, M. B. F. Werneck, K. W. Wucherpfennig and H. Cantor, Regulation of activated CD4+ T cells by NK Cells via the Qa-1-NKG2A inhibitory pathway,, Immunity, 26 (2007), 593-604.
doi: 10.1016/j.immuni.2007.03.017.
|
[31]
|
D. A. Mitchell, X. Cui, R. J. Schmittling, L. Sanchez-Perez, D. J. Snyder, K. L. Congdon, G. E. Archer, A. Desjardins, A. H. Friedman, H. S. Friedman, J. E. Herndon, R. E. McLendon, D. A. Reardon, J. J. Vredenburgh, D. D. Bigner and J. H. Sampson, Monoclonal antibody blockade of IL-2 receptor Á during lymphopenia selectively depletes regulatory T cells in mice and humans, Blood, 118 (2011), 3003-3012.
doi: 10.1182/blood-2011-02-334565.
|
[32]
|
S. J. Merrill, A model of the role of natural killer cells in immune surveillance, J. Math. Biol., 12 (1981), 363-373.
doi: 10.1007/BF00276923.
|
[33]
|
H. Moore and N. K. Li, A mathematical model for chronic myelogenous leukemia CML and T cell interaction, J. Theor. Biol., 227 (2004), 513-523.
doi: 10.1016/j.jtbi.2003.11.024.
|
[34]
|
J. S. McDougal, A. Mawle, S. P. Cort, J. K. Nicholson, G. D. Cross, J. A. Scheppler-Campbell, D. Hicks and J. Sligh, Cellular tropism of the human retrovirus HTLV-Ⅲ/LAV. I. Role of T cell activation and expression of the T4 antigen, J. Immunol., 135 (1985), 3151-3162.
|
[35]
|
J. M. Murray, G. Kaufmann, A. D. Kelleher and D. A. Cooper, A model of primary HIV-1 infection, Math. Biosic., 154 (1998), 57-85.
doi: 10.1016/S0025-5564(98)10046-9.
|
[36]
|
A. R. McLean and M. A. Nowak, Models of interactions between HIV and other pathogens, J. theor. Biol., 155 (1992), 69-86.
doi: 10.1016/S0022-5193(05)80549-1.
|
[37]
|
J. S. McDougal, A. Mawle, S. P. Cort, J. K. Nicholson, G. D. Cross, J. A. Scheppler-Campbell, D. Hicks and J. Sligh, Cellular tropism of the human retrovirus HTLV-Ⅲ/LAV, J. Immunol., 135 (1985), 3151-3162.
|
[38]
|
A. R. McLean and T. B. L. Kirkwood, A model of human immunodeficiency virus infection in T helper cell clones, J. Theor. Biol., 147 (1990), 177-203.
doi: 10.1016/S0022-5193(05)80051-7.
|
[39]
|
M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000.
|
[40]
|
A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
doi: 10.1126/science.271.5255.1582.
|
[41]
|
L. Rong and A. S. Perelson, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLOS Comput. Biol., 5 (2009), 18pp.
doi: 10.1371/journal.pcbi.1000533.
|
[42]
|
H. A. Van Den Berg and D. A. Rand, Dynamicsof T cell activation threshold tuning, J. Theor. Bio., 228 (2004), 397-416.
|
[43]
|
N. Vrisekoop, I. Den Braber, A. B. De Boer, A. F. C. Ruiter and M. T. Ackerman, Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool, Proc Natl Aced Sci., 105 (2008), 6115-6120.
doi: 10.1073/pnas.0709713105.
|
[44]
|
L. Santarpia, A. K. El-Naggar, G. J. Cote, J. N. Myers and S. I. Sherman, Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer, J. Clin. Endocrinol. Metab., 93 (2008), 278-284.
doi: 10.1210/jc.2007-1076.
|
[45]
|
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bio., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[46]
|
R. A. Weiss, How does HIV cause aids?, Science, 260 (1993), 1273-1279.
doi: 10.1126/science.8493571.
|
[47]
|
S. Wang, P. Hottz, M. Schechter and L. Rong, Modeling the slow CD4+ T cell decline in HIV-Infected individuals, PLoS Comput. Biol., 11 (2015).
doi: 10.1371/journal.pcbi.1004665.
|
[48]
|
D. Zagury, J. Bernard, R. Leonard, R. Cheynier, M. Feldman, P. S. Sarin and R. C. Gallo, Long-term cultures of HTLV-Ⅲ-infected t cells: A model of cytopathology of T-cell depletion in AIDS, Science, 231 (1986), 850-853.
doi: 10.1126/science.2418502.
|
[49]
|
UNAIDS, Fact sheet-Latest statistics on the status of the AIDS epidemic, http://www.unaids.org/en/resources/fact-sheet, 2016.
|